Python标准库分享之存储对象 (pickle包,cPickle包)

简介: Python标准库分享之存储对象 (pickle包,cPickle包)

在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python“一切皆对象”的哲学,在

Python中,无论是变量还是函数,都是一个对象。当Python运行时,对象存储在内存中,随时等待系统的调用。然而,内存

里的数据会随着计算机关机和消失,如何将对象保存到文件,并储存在硬盘上呢?


计算机的内存中存储的是二进制的序列 (当然,在Linux眼中,是文本流)。我们可以直接将某个对象所对应位置的数据抓取

下来,转换成文本流 (这个过程叫做serialize),然后将文本流存入到文件中。由于Python在创建对象时,要参考对象的类

定义,所以当我们从文本中读取对象时,必须在手边要有该对象的类定义,才能懂得如何去重建这一对象。从文件读取时,

对于Python的内建(built-in)对象 (比如说整数、词典、表等等),由于其类定义已经载入内存,所以不需要我们再在程序中

定义类。但对于用户自行定义的对象,就必须要先定义类,然后才能从文件中载入对象 (比如面向对象的基本概念中的对象

那个summer)。


pickle包

对于上述过程,最常用的工具是Python中的pickle包。


1) 将内存中的对象转换成为文本流:

import pickle
# define class
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
summer       = Bird()                 # construct an object
picklestring = pickle.dumps(summer)   # serialize object


使用pickle.dumps()方法可以将对象summer转换成了字符串 picklestring(也就是文本流)。随后我们可以用普通文本的存储

方法来将该字符串储存在文件(文本文件的输入输出)。

当然,我们也可以使用pickle.dump()的方法,将上面两部合二为一:


import pickle
# define class
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
summer       = Bird()                        # construct an object
fn           = 'a.pkl'
with open(fn, 'w') as f:                     # open file with write-mode
    picklestring = pickle.dump(summer, f)   # serialize and save object


对象summer存储在文件a.pkl


2) 重建对象


首先,我们要从文本中读出文本,存储到字符串 (文本文件的输入输出)。然后使用pickle.loads(str)的方法,将字符串转

换成为对象。要记得,此时我们的程序中必须已经有了该对象的类定义。


此外,我们也可以使用pickle.load()的方法,将上面步骤合并:

import pickle
# define the class before unpickle
class Bird(object):
    have_feather = True
    way_of_reproduction  = 'egg'
fn     = 'a.pkl'
with open(fn, 'r') as f:
    summer = pickle.load(f)   # read file and build object


cPickle包

cPickle包的功能和用法与pickle包几乎完全相同 (其存在差别的地方实际上很少用到),不同在于cPickle是基于c语言编写

的,速度是pickle包的1000倍。对于上面的例子,如果想使用cPickle包,我们都可以将import语句改为:


import cPickle as pickle


就不需要再做任何改动了。

相关文章
|
4天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
18 0
|
2天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
18 7
|
3天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
13 3
|
1天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
2天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
22 0
|
3月前
|
JSON 缓存 安全
Python pickle 二进制序列化和反序列化 - 数据持久化
Python pickle 二进制序列化和反序列化 - 数据持久化
51 0
|
6月前
|
存储 JSON JavaScript
Python中的JSON与Pickle模块:数据序列化和反序列化的利器
在Python编程中,数据的序列化和反序列化是经常遇到的操作。序列化是将数据结构或对象状态转换为可以存储或传输的格式的过程,而反序列化则是这个过程的逆操作,即将序列化的数据重新转换回原来的数据结构或对象状态。Python中的JSON和Pickle模块就是实现数据序列化和反序列化的强大工具。
|
存储 JSON 数据格式
【Python标准库】Pickle库与序列化
【Python标准库】Pickle库与序列化
|
存储 XML JSON
python cPickle 与 pickle模块序列化详解
python cPickle 与 pickle模块序列化详解