Python分享之动态类型

简介: Python分享之动态类型

动态类型(dynamic typing)是Python另一个重要的核心概念。我们之前说过,Python的变量(variable)不需要声明,而在赋值时,变量可以重新赋值为任意值。这些都与动态类型的概念相关。


动态类型


在我们接触的对象中,有一类特殊的对象,是用于存储数据的。常见的该类对象包括各种数字,字符串,表,词典。在C语言中,我们称这样一些数据结构为变量。而在Python中,这些是对象。


对象是储存在内存中的实体。但我们并不能直接接触到该对象。我们在程序中写的对象名,只是指向这一对象的引用(reference)。

引用和对象分离,是动态类型的核心。引用可以随时指向一个新的对象:

a = 3
a = 'at'


第一个语句中,3是储存在内存中的一个整数对象。通过赋值,引用a指向对象3。

第二个语句中,内存中建立对象‘at’,是一个字符串(string)。引用a指向了'at'。此时,对象3不再有引用指向它。Python会自动将没有引用指向的对象销毁(destruct),释放相应内存。


(对于小的整数和短字符串,Python会缓存这些对象,而不是频繁的建立和销毁。)

1. a = 5
2. b = a
3. a = a + 2


再看这个例子。通过前两个句子,我们让a,b指向同一个整数对象5(b = a的含义是让引用b指向引用a所指的那一个对象)。但第三个句子实际上对引用a重新赋值,让a指向一个新的对象7。此时a,b分别指向不同的对象。我们看到,即使是多个引用指向同一个对象,如果一个引用值发生变化,那么实际上是让这个引用指向一个新的引用,并不影响其他的引用的指向。从效果上看,就是各个引用各自独立,互不影响。


其它数据对象也是如此:

L1 = [1,2,3]
L2 = L1
L1 = 1


但注意以下情况

L1 = [1,2,3]
L2 = L1
L1[0] = 10
print L2


在该情况下,我们不再对L1这一引用赋值,而是对L1所指向的表的元素赋值。结果是,L2也同时发生变化。


原因何在呢?因为L1,L2的指向没有发生变化,依然指向那个表。表实际上是包含了多个引用的对象(每个引用是一个元素,比如L1[0],L1[1]..., 每个引用指向一个对象,比如1,2,3), 。而L1[0] = 10这一赋值操作,并不是改变L1的指向,而是对L1[0], 也就是表对象的一部份(一个元素),进行操作,所以所有指向该对象的引用都受到影响。


(与之形成对比的是,我们之前的赋值操作都没有对对象自身发生作用,只是改变引用指向。)


列表可以通过引用其元素,改变对象自身(in-place change)。这种对象类型,称为可变数据对象(mutable object),词典也是这样的数据类型。


而像之前的数字和字符串,不能改变对象本身,只能改变引用的指向,称为不可变数据对象(immutable object)。


我们之前学的元组(tuple),尽管可以调用引用元素,但不可以赋值,因此不能改变对象自身,所以也算是immutable object.


从动态类型看函数的参数传递

函数的参数传递,本质上传递的是引用。比如说:

def f(x):
    x = 100
    print x
a = 1
f(a)
print a


参数x是一个新的引用,指向a所指的对象。如果参数是不可变(immutable)的对象,a和x引用之间相互独立。对参数x的操作不会影响引用a。这样的传递类似于C语言中的值传递。


如果传递的是可变(mutable)的对象,那么改变函数参数,有可能改变原对象。所有指向原对象的引用都会受影响,编程的时候要对此问题留心。比如说:

def f(x):
    x[0] = 100
    print x
a = [1,2,3]
f(a)
print a


动态类型是Python的核心机制之一。可以在应用中慢慢熟悉。

 

小结

引用和对象的分离,对象是内存中储存数据的实体,引用指向对象。

可变对象,不可变对象

函数值传递

相关文章
|
2月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
20天前
|
存储 索引 Python
Python散列类型(1)
【10月更文挑战第9天】
|
25天前
|
计算机视觉 Python
Python实用记录(一):如何将不同类型视频按关键帧提取并保存图片,实现图片裁剪功能
这篇文章介绍了如何使用Python和OpenCV库从不同格式的视频文件中按关键帧提取图片,并展示了图片裁剪的方法。
54 0
|
17天前
|
存储 数据安全/隐私保护 索引
|
24天前
|
Python
【10月更文挑战第6天】「Mac上学Python 11」基础篇5 - 字符串类型详解
本篇将详细介绍Python中的字符串类型及其常见操作,包括字符串的定义、转义字符的使用、字符串的连接与格式化、字符串的重复和切片、不可变性、编码与解码以及常用内置方法等。通过本篇学习,用户将掌握字符串的操作技巧,并能灵活处理文本数据。
50 1
【10月更文挑战第6天】「Mac上学Python 11」基础篇5 - 字符串类型详解
|
24天前
|
Python
【10月更文挑战第6天】「Mac上学Python 10」基础篇4 - 布尔类型详解
本篇将详细介绍Python中的布尔类型及其应用,包括布尔值、逻辑运算、关系运算符以及零值的概念。布尔类型是Python中的一种基本数据类型,广泛应用于条件判断和逻辑运算中,通过本篇的学习,用户将掌握如何使用布尔类型进行逻辑操作和条件判断。
54 1
【10月更文挑战第6天】「Mac上学Python 10」基础篇4 - 布尔类型详解
WK
|
19天前
|
存储 Python
Python内置类型名
Python 内置类型包括数字类型(int, float, complex)、序列类型(str, list, tuple, range)、集合类型(set, frozenset)、映射类型(dict)、布尔类型(bool)、二进制类型(bytes, bytearray, memoryview)、其他类型(NoneType, type, 函数类型等),提供了丰富的数据结构和操作,支持高效编程。
WK
11 2
|
21天前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
22天前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
|
30天前
|
存储 Java Apache
Python Number类型详解!
本文详细介绍了 Python 中的数字类型,包括整数(int)、浮点数(float)和复数(complex),并通过示例展示了各种算术操作及其类型转换方法。Python 的 `int` 类型支持任意大小的整数,`float` 类型用于表示实数,而 `complex` 类型用于表示复数。此外,文章还对比了 Python 和 Java 在数字类型处理上的区别,如整数类型、浮点数类型、复数类型及高精度类型,并介绍了各自类型转换的方法。尽管两种语言在语法上有所差异,但其底层逻辑是相通的。通过本文,读者可以更好地理解 Python 的数字类型及其应用场景。
35 2