分享之python 线程

简介: 分享之python 线程

Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元。


1、threading模块


threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。


import threading
import time
def worker(num):
    """
    thread worker function
    :return:
    """
    time.sleep(1)
    print("The num is  %d" % num)
    return
for i in range(20):
    t = threading.Thread(target=worker,args=(i,),name=“t.%d” % i)
    t.start()


上述代码创建了20个“前台”线程,然后控制器就交给了CPU,CPU根据指定算法进行调度,分片执行指令。


Thread方法说明


t.start() : 激活线程,


t.getName() : 获取线程的名称


t.setName() : 设置线程的名称


t.name : 获取或设置线程的名称


t.is_alive() : 判断线程是否为激活状态


t.isAlive() :判断线程是否为激活状态


t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止


t.isDaemon() : 判断是否为守护线程


t.ident :获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None。


t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义


t.run() :线程被cpu调度后自动执行线程对象的run方法


2、线程锁threading.RLock和threading.Lock


由于线程之间是进行随机调度,并且每个线程可能只执行n条执行之后,CPU接着执行其他线程。为了保证数据的准确性,引入了锁的概念。所以,可能出现如下问题:


例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。


import threading
import time
globals_num = 0
lock = threading.RLock()
def Func():
    lock.acquire()  # 获得锁 
    global globals_num
    globals_num += 1
    time.sleep(1)
    print(globals_num)
    lock.release()  # 释放锁 
for i in range(10):
    t = threading.Thread(target=Func)
    t.start()


3、threading.RLock和threading.Lock 的区别


RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。


import threading
lock = threading.Lock()    #Lock对象
lock.acquire()
lock.acquire()  #产生了死琐。
lock.release()
lock.release() 
import threading
rLock = threading.RLock()  #RLock对象
rLock.acquire()
rLock.acquire()    #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()


4、threading.Event


python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。


事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。


   clear:将“Flag”设置为False

   set:将“Flag”设置为True

   Event.isSet() :判断标识位是否为Ture。


import threading
def do(event):
    print('start')
    event.wait()
    print('execute')
event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()
event_obj.clear()
inp = input('input:')
if inp == 'true':
    event_obj.set()


当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。


5、threading.Condition


一个condition变量总是与某些类型的锁相联系,这个可以使用默认的情况或创建一个,当几个condition变量必须共享和同一个锁的时候,是很有用的。锁是conditon对象的一部分:没有必要分别跟踪。


condition变量服从上下文管理协议:with语句块封闭之前可以获取与锁的联系。 acquire() 和 release() 会调用与锁相关联的相应的方法。


其他和锁关联的方法必须被调用,wait()方法会释放锁,当另外一个线程使用 notify() or notify_all()唤醒它之前会一直阻塞。一旦被唤醒,wait()会重新获得锁并返回,


Condition类实现了一个conditon变量。 这个conditiaon变量允许一个或多个线程等待,直到他们被另一个线程通知。 如果lock参数,被给定一个非空的值,,那么他必须是一个lock或者Rlock对象,它用来做底层锁。否则,会创建一个新的Rlock对象,用来做底层锁。


   wait(timeout=None) : 等待通知,或者等到设定的超时时间。当调用这wait()方法时,如果调用它的线程没有得到锁,那么会抛出一个RuntimeError 异常。 wati()释放锁以后,在被调用相同条件的另一个进程用notify() or notify_all() 叫醒之前 会一直阻塞。wait() 还可以指定一个超时时间。


如果有等待的线程,notify()方法会唤醒一个在等待conditon变量的线程。notify_all() 则会唤醒所有在等待conditon变量的线程。


注意: notify()和notify_all()不会释放锁,也就是说,线程被唤醒后不会立刻返回他们的wait() 调用。除非线程调用notify()和notify_all()之后放弃了锁的所有权。


在典型的设计风格里,利用condition变量用锁去通许访问一些共享状态,线程在获取到它想得到的状态前,会反复调用wait()。修改状态的线程在他们状态改变时调用 notify() or notify_all(),用这种方式,线程会尽可能的获取到想要的一个等待者状态。 例子: 生产者-消费者模型


import threading
import time
def consumer(cond):
    with cond:
        print("consumer before wait")
        cond.wait()
        print("consumer after wait")
def producer(cond):
    with cond:
        print("producer before notifyAll")
        cond.notifyAll()
        print("producer after notifyAll")
condition = threading.Condition()
c1 = threading.Thread(name="c1", target=consumer, args=(condition,))
c2 = threading.Thread(name="c2", target=consumer, args=(condition,))
p = threading.Thread(name="p", target=producer, args=(condition,))
c1.start()
time.sleep(2)
c2.start()
time.sleep(2)
p.start()


6、queue模块


Queue 就是对队列,它是线程安全的

举例来说,我们去麦当劳吃饭。饭店里面有厨师职位,前台负责把厨房做好的饭卖给顾客,顾客则去前台领取做好的饭。这里的前台就相当于我们的队列。形成管道样,厨师做好饭通过前台传送给顾客,所谓单向队列


这个模型也叫生产者-消费者模型。

import queue
q = queue.Queue(maxsize=0)  # 构造一个先进显出队列,maxsize指定队列长度,为0 时,表示队列长度无限制。
q.join()    # 等到队列为kong的时候,在执行别的操作
q.qsize()   # 返回队列的大小 (不可靠)
q.empty()   # 当队列为空的时候,返回True 否则返回False (不可靠)
q.full()    # 当队列满的时候,返回True,否则返回False (不可靠)
q.put(item, block=True, timeout=None) #  将item放入Queue尾部,item必须存在,可以参数block默认为True,表示当队列满时,会等待队列给出可用位置,
                         为False时为非阻塞,此时如果队列已满,会引发queue.Full 异常。 可选参数timeout,表示 会阻塞设置的时间,过后,
                          如果队列无法给出放入item的位置,则引发 queue.Full 异常
q.get(block=True, timeout=None) #   移除并返回队列头部的一个值,可选参数block默认为True,表示获取值的时候,如果队列为空,则阻塞,为False时,不阻塞,
                      若此时队列为空,则引发 queue.Empty异常。 可选参数timeout,表示会阻塞设置的时候,过后,如果队列为空,则引发Empty异常。
q.put_nowait(item) #   等效于 put(item,block=False)
q.get_nowait() #    等效于 get(item,block=False)


代码如下:

#!/usr/bin/env python
import Queue
import threading
message = Queue.Queue(10)
def producer(i):
    while True:
        message.put(i)
def consumer(i):
    while True:
        msg = message.get()
for i in range(12):
    t = threading.Thread(target=producer, args=(i,))
    t.start()
for i in range(10):
    t = threading.Thread(target=consumer, args=(i,))
    t.start()


线程池示例一:

# 简单往队列中传输线程数
import threading
import time
import queue
class Threadingpool():
    def __init__(self,max_num = 10):
        self.queue = queue.Queue(max_num)
        for i in range(max_num):
            self.queue.put(threading.Thread)
    def getthreading(self):
        return self.queue.get()
    def addthreading(self):
        self.queue.put(threading.Thread)
def func(p,i):
    time.sleep(1)
    print(i)
    p.addthreading()
if __name__ == "__main__":
    p = Threadingpool()
    for i in range(20):
        thread = p.getthreading()
        t = thread(target = func, args = (p,i))
        t.start()


线程池示例二:

#往队列中无限添加任务
import queue
import threading
import contextlib
import time
StopEvent = object()
class ThreadPool(object):
    def __init__(self, max_num):
        self.q = queue.Queue()
        self.max_num = max_num
        self.terminal = False
        self.generate_list = []
        self.free_list = []
    def run(self, func, args, callback=None):
        """
        线程池执行一个任务
        :param func: 任务函数
        :param args: 任务函数所需参数
        :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
        :return: 如果线程池已经终止,则返回True否则None
        """
        if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
            self.generate_thread()
        w = (func, args, callback,)
        self.q.put(w)
    def generate_thread(self):
        """
        创建一个线程
        """
        t = threading.Thread(target=self.call)
        t.start()
    def call(self):
        """
        循环去获取任务函数并执行任务函数
        """
        current_thread = threading.currentThread
        self.generate_list.append(current_thread)
        event = self.q.get()  # 获取线程
        while event != StopEvent:   # 判断获取的线程数不等于全局变量
            func, arguments, callback = event   # 拆分元祖,获得执行函数,参数,回调函数
            try:
                result = func(*arguments)   # 执行函数
                status = True
            except Exception as e:    # 函数执行失败
                status = False
                result = e
            if callback is not None:
                try:
                    callback(status, result)
                except Exception as e:
                    pass
            # self.free_list.append(current_thread)
            # event = self.q.get()
            # self.free_list.remove(current_thread)
            with self.work_state():
                event = self.q.get()
        else:
            self.generate_list.remove(current_thread)
    def close(self):
        """
        关闭线程,给传输全局非元祖的变量来进行关闭
        :return:
        """
        for i in range(len(self.generate_list)):
            self.q.put(StopEvent)
    def terminate(self):
        """
        突然关闭线程
        :return:
        """
        self.terminal = True
        while self.generate_list:
            self.q.put(StopEvent)
        self.q.empty()
    @contextlib.contextmanager
    def work_state(self):
        self.free_list.append(threading.currentThread)
        try:
            yield
        finally:
            self.free_list.remove(threading.currentThread)
def work(i):
    print(i)
    return i +1 # 返回给回调函数
def callback(ret):
    print(ret)
pool = ThreadPool(10)
for item in range(50):
    pool.run(func=work, args=(item,),callback=callback)
pool.terminate()
# pool.close()
相关文章
|
24天前
|
数据采集 存储 安全
如何确保Python Queue的线程和进程安全性:使用锁的技巧
本文探讨了在Python爬虫技术中使用锁来保障Queue(队列)的线程和进程安全性。通过分析`queue.Queue`及`multiprocessing.Queue`的基本线程与进程安全特性,文章指出在特定场景下使用锁的重要性。文中还提供了一个综合示例,该示例利用亿牛云爬虫代理服务、多线程技术和锁机制,实现了高效且安全的网页数据采集流程。示例涵盖了代理IP、User-Agent和Cookie的设置,以及如何使用BeautifulSoup解析HTML内容并将其保存为文档。通过这种方式,不仅提高了数据采集效率,还有效避免了并发环境下的数据竞争问题。
如何确保Python Queue的线程和进程安全性:使用锁的技巧
|
11天前
|
API Python
探索Python中的多线程编程
探索Python中的多线程编程
32 5
|
21天前
|
调度 Python
Python 中如何实现多线程?
【8月更文挑战第29天】
40 6
|
25天前
|
API C语言 C++
C调用Python之多线程与traceback打印
C调用Python之多线程与traceback打印
25 2
|
30天前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
Python是一门强大的编程语言,提供了多种并发编程方式,其中多线程是非常重要的一种。本文将详细介绍Python的threading模块,包括其基本用法、线程同步、线程池等,最后附上一个综合详细的例子并输出运行结果。
|
28天前
|
数据采集 Java Python
Python并发编程:多线程(threading模块)
本文详细介绍了Python的threading模块,包括线程的创建、线程同步、线程池的使用,并通过多个示例展示了如何在实际项目中应用这些技术。通过学习这些内容,您应该能够熟练掌握Python中的多线程编程,提高编写并发程序的能力。 多线程编程可以显著提高程序的并发性能,但也带来了新的挑战和问题。在使用多线程时,需要注意避免死锁、限制共享资源的访问,并尽量使用线程池来管理和控制线程。
|
1月前
|
开发工具 计算机视觉 Python
大恒相机 - Python 多线程拍摄
大恒相机 - Python 多线程拍摄
32 1
|
1月前
|
调度 Python
|
1月前
|
Shell Python
Python多线程怎么做?
Python 3 中利用 `threading` 模块实现多线程。创建与执行线程有两种常见方式:一是直接使用 `Thread` 类实例,指定目标函数;二是通过继承 `Thread` 类并重写 `run` 方法。前者构造 `Thread` 对象时通过 `target` 参数指定函数,后者则在子类中定义线程的行为。两种方式均需调用 `start` 方法启动线程。示例展示了这两种创建线程的方法及输出顺序,体现线程并发执行的特点。
|
23天前
|
数据采集 Java Python
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器