【数据结构】二叉树的链式实现及遍历

简介: 【数据结构】二叉树的链式实现及遍历

一、二叉树的遍历

后文所有代码中的二叉树结点:

typedef char BTDataType;
//二叉树结点结构体
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;

1、前序遍历

前,中,后序遍历都可以采用分治递归的思想解决,将根节点和它的孩子结点分别处理。

// 二叉树前序遍历 
void BinaryTreePrevOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    printf("%c ", root->data);
    BinaryTreePrevOrder(root->left);
    BinaryTreePrevOrder(root->right);
}

此处仅利用递归展开图分析前序遍历,中序和后序也是相同的思想:

2、中序遍历

// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    BinaryTreeInOrder(root->left);
    printf("%c ", root->data);
    BinaryTreeInOrder(root->right);
}

3、后序遍历

// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }
    BinaryTreePostOrder(root->left);
    BinaryTreePostOrder(root->right);
    printf("%c ", root->data);
}

4、层序遍历

层序遍历需要利用队列来进行,如果二叉树跟结点不为空,则让指向它的一个指针入队,然后将队头结点记录下来,先将它的值打印,然后判断它的左右孩子为非空则入队,然后删掉队头换下一个继续记录打印…直到队列为空则遍历完成。

例如对如图这个二叉树:

层序遍历结果为:12345

先将根节点1入队,打印1

然后将1的左右孩子2和3入队

删掉队头1,front换为2,打印2

然后将2的左孩子4入队

删掉队头2,front换为3,打印3

然后将3的右孩子5入队

… …

接着按这样打印4,5便完成了二叉树的层序遍历

程序代码利用了自己创建的队列,代码如下:

//层序遍历
void LevelOrder(BTNode* root)
{
    //创建队列
    Que q;
    QueueInit(&q);
    //如果根节点不为空,则放进队列
    if (root)
        QueuePush(&q, root);
    while (!QueueEmpty(&q))
    {
        //将队头打印
        BTNode* front = QueueFront(&q);
        printf("%c ", front->data);
        //判断front左右节点不为空则入队
        if (front->left)
            QueuePush(&q, front->left);
        if (front->right)
            QueuePush(&q, front->right);
        QueuePop(&q);
    }
    printf("\n");
    QueueDestroy(&q);
}

二、二叉树结点个数及高度

1、二叉树节点个数

采用分治法递归实现,当根节点为空时返回值为0,不为空则返回左右子树上的节点数加上自身1。

int BinaryTreeSize(BTNode* root)
{
    return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

2、二叉树叶子节点个数

采用分治法递归实现,根节点为空时返回0,当根节点没有孩子结点时说明它是叶子节点,返回1,其他情况时只需左右子树上的叶子节点相加即可。

int BinaryTreeLeafSize(BTNode* root)
{
    if (root == NULL)
    {
        return 0;
    }
    if (root->left == NULL && root->right == NULL)
    {
        return 1;
    }
    return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

3、二叉树第k层节点个数

需要保证k大于0才可,当根节点为空,则返回0,当k等于1时只有一层一个节点,返回1,k>1时第k层节点数就相当于它左右孩子的第k-1层节点数相加。

int BinaryTreeLevelKSize(BTNode* root, int k)
{
    assert(k > 0);
    if (root == NULL)
    {
        return 0;
    }
    if (k == 1)
    {
        return 1;
    }
    return BinaryTreeLevelKSize(root->left, k - 1)
        + BinaryTreeLevelKSize(root->right, k - 1);
}

4、二叉树查找值为x的节点

跟节点为空则找不到返回NULL,当根节点的值为要找的值时返回该节点,不相等则分别判断它的左右孩子节点,直到找到为止。

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
    if (root == NULL)
    {
        return NULL;
    }
    if (root->data == x)
    {
        return root;
    }
    BTNode* ret = BinaryTreeFind(root->left,x);
    if (ret)
    {
        return ret;
    }
    return BinaryTreeFind(root->right, x);
}

三、二叉树创建及销毁

1、通过前序遍历数组创建二叉树

读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储)。 例如如下的先序遍历字符串: ABC##DE#G##F### 其中“#”表示的是空格,空格字符代表空树。建立起此二叉树以后,再对二叉树进行中序遍历,输出遍历结果。

#include <stdio.h>
#include<stdlib.h>
typedef char BTDataType;
typedef struct BinaryTreeNode {
    BTDataType data;
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
} BTNode;
BTNode* BinaryTreeCreate(BTDataType* a, int* pi) {
    if (a[*pi] == '#') {
        ++*pi;
        return NULL;
    }
    BTNode* root = (BTNode*)malloc(sizeof(BTDataType));
    root->data = a[*pi];
    ++*pi;
    root->left = BinaryTreeCreate(a, pi);
    root->right = BinaryTreeCreate(a, pi);
    return root;
}
//中序遍历
void InOrder(BTNode* root)
{
    if(root==NULL)
    {
        return;
    }
    InOrder(root->left);
    printf("%c ",root->data);
    InOrder(root->right);
}
int main() {
    char a[100];
    scanf("%s",a);
    int pi=0;
    BTNode* root=BinaryTreeCreate(a, &pi);
    InOrder(root);
    return 0;
}

2、二叉树的销毁

void BinaryTreeDestory(BTNode* root)
{
    if (root == NULL)
    {
        return;
    }
    BinaryTreeDestory(root->left);
    BinaryTreeDestory(root->right);
    free(root);
}

3、判断是否为完全二叉树

二叉树层序遍历的基础上修改一下,让空节点也进入队列,遍历时遇到空节点则退出,继续遍历如果结束前还有非空节点则不是完全二叉树。

int BinaryTreeComplete(BTNode* root)
{
    //创建队列
    Que q;
    QueueInit(&q);
    //如果根节点不为空,则放进队列
    if (root)
        QueuePush(&q, root);
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        if (front == NULL)
        {
            break;
        }
        QueuePush(&q, front->left);
        QueuePush(&q, front->right);
        QueuePop(&q);
    }
    //此时已经遇到空节点,如果再遇到非空节点则不是完全二叉树
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        if (front)
        {
            QueueDestroy(&q);
            return false;
        }
        QueuePop(&q);
    }
    QueueDestroy(&q);
    return true;
}

四、测试代码

手动构建一个如下图的二叉树,对代码进行测试:

测试结果应该为:

前序:123874569

中序:832715469

后序:837259641

是否为完全二叉树:0

节点数:9

叶子节点数:4

BTNode* BuyNode(BTDataType x)
{
    BTNode* node = (BTNode*)malloc(sizeof(BTNode));
    if (node == NULL)
    {
        perror("malloc fail");
        exit(-1);
    }
    node->data = x;
    node->left = NULL;
    node->right = NULL;
    return node;
}
int main()
{
      // 手动构建
  BTNode* node1 = BuyNode('1');
  BTNode* node2 = BuyNode('2');
  BTNode* node3 = BuyNode('3');
  BTNode* node4 = BuyNode('4');
  BTNode* node5 = BuyNode('5');
  BTNode* node6 = BuyNode('6');
  BTNode* node7 = BuyNode('7');
  BTNode* node8 = BuyNode('8');
  BTNode* node9 = BuyNode('9');
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  node2->right = node7;
  node3->left = node8;
  node6->right = node9;
    printf("前序遍历:");
    BinaryTreePrevOrder(node1);
  printf("\n");
    printf("中序遍历:");
    BinaryTreeInOrder(node1);
  printf("\n");
    printf("后序遍历:");
    BinaryTreePostOrder(node1);
  printf("\n");
    printf("层序遍历:");
    LevelOrder(node1);
    printf("\n");
    printf("BinaryTreeComplete:%d\n", BinaryTreeComplete(node1));
    printf("BinaryTreeSize:%d\n", BinaryTreeSize(node1));
    printf("BinaryTreeLeafSize:%d\n", BinaryTreeLeafSize(node1));
    BinaryTreeDestory(node1);
  node1 = NULL;
    return 0;
}

运行结果:

运行结果与预测结果一致。

目录
相关文章
|
14天前
|
存储 机器学习/深度学习
【数据结构】二叉树全攻略,从实现到应用详解
本文介绍了树形结构及其重要类型——二叉树。树由若干节点组成,具有层次关系。二叉树每个节点最多有两个子树,分为左子树和右子树。文中详细描述了二叉树的不同类型,如完全二叉树、满二叉树、平衡二叉树及搜索二叉树,并阐述了二叉树的基本性质与存储方式。此外,还介绍了二叉树的实现方法,包括节点定义、遍历方式(前序、中序、后序、层序遍历),并提供了多个示例代码,帮助理解二叉树的基本操作。
38 13
【数据结构】二叉树全攻略,从实现到应用详解
|
11天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
11天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
1月前
|
存储
【初阶数据结构篇】二叉树基础概念
有⼀个特殊的结点,称为根结点,根结点没有前驱结点。
|
1月前
|
算法
【初阶数据结构篇】二叉树算法题
二叉树是否对称,即左右子树是否对称.
|
1月前
|
存储
【初阶数据结构篇】实现链式结构二叉树(二叉链)下篇
要改变root指针的指向,将本来指向根节点的root指针改为空,所以传二级指针(一级指针也可以,只不过在调用完记得把root置为空)。
|
1月前
|
存储 测试技术
【初阶数据结构篇】实现链式结构二叉树(二叉链)上篇
先构建根结点,再对左右子树构建,每次需要时申请一个结点空间即可,否则返回空指针。
|
1月前
|
存储 算法 测试技术
【初阶数据结构篇】实现顺序结构二叉树(堆的实现方法)
注意传过去的参数是插入的位置,即插入前的size,在调整完后再将size++
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。