栈和队列(二) 队列操作详解及栈与队列的相互实现

简介: 栈和队列(二) 队列操作详解及栈与队列的相互实现

栈操作实现:栈和队列(一) 栈操作详解

四、队列

1、什么是队列

队列就像是高速公路上的一个隧道一样,所有的车辆只允许从入口驶入,从出口驶出,先进先出,不允许逆行。

队列(queue)是一种线性数据结构,队列的元素只能先入先出(First In First Out,简称FIFO)。

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

2、队列的基本操作

利用单链表来实现队列的基本操作

代码结构设计:

  • Queue.h: 存放队列结构及需要用到的头文件,函数声明等
  • Queue.c: 各种操作函数的具体实现

Queue.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
//方便修改数据类型
typedef int QDataType;
// 链式结构:表示队列 
typedef struct QListNode
{
  struct QListNode* next;
  QDataType data;
}QNode;
// 队列的结构 
typedef struct Queue
{
  QNode* front;//队头
  QNode* rear;//队尾
}Queue;
// 初始化队列 
void QueueInit(Queue* q);
// 队尾入队列 
void QueuePush(Queue* q, QDataType data);
// 队头出队列 
void QueuePop(Queue* q);
// 获取队列头部元素 
QDataType QueueFront(Queue* q);
// 获取队列队尾元素 
QDataType QueueBack(Queue* q);
// 获取队列中有效元素个数 
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q);
// 销毁队列 
void QueueDestroy(Queue* q);

Queue.c

#include "Queue.h"
初始化队列
void QueueInit(Queue* q)
{
  assert(q);
  q->front = NULL;
  q->rear = NULL;
}
队尾入队列
void QueuePush(Queue* q, QDataType data)
{
  assert(q);
  //创建一个节点放数据
  QNode* newNode=(QNode*)malloc(sizeof(QNode));
  if (newNode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  newNode->data = data;
  newNode->next = NULL;
  //判断是否是第一个入队元素
  if (q->rear == NULL)
  {
    q->front = q->rear = newNode;
  }
  else
  {
    q->rear->next= newNode;
    q->rear = newNode;
  }
}

队头出队列
void QueuePop(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  //判断是否只有一个元素
  if (q->front->next == NULL)
  {
    free(q->front);
    q->front = q->rear = NULL;
  }
  else
  {
    QNode* del = q->front;
    q->front = q->front->next;
    free(del);
  }
}

获取队列头部元素

front是队头节点,它的数据便是队头元素

QDataType QueueFront(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->front->data;
}
获取队列队尾元素

rear是队尾节点,它的数据便是队尾元素

QDataType QueueBack(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->rear->data;
}
获取队列中有效元素个数

遍历一遍链表就能得到有效元素个数,也可以直接给队列的结构里加上一个size

int QueueSize(Queue* q)
{
  assert(q);
  QNode* cur = q->front;
  int size = 0;
  while (cur)
  {
    cur = cur->next;
    size++;
  }
  return size;
}
检测队列是否为空,如果为空返回非零结果,如果非空返回0
int QueueEmpty(Queue* q)
{
  assert(q);
  //队头节点为空说明队列为空
  return q->front == NULL;
}
销毁队列
void QueueDestroy(Queue* q)
{
  assert(q);
  QNode* cur = q->front;
  while (cur)
  {
    QNode* curNext = cur->next;
    free(cur);
    cur = curNext;
  }
  q->front = q->rear = NULL;
}

五、设计循环队列

循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

设计循环队列实现以下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

创建队列时多开辟一个空间来区分空和满

如下是一个队列长度k=4的循环队列:

用数组实现

//循环队列结构
typedef struct {
    int* a;
    int front;
    int rear;
    int k;
} MyCircularQueue;
//初始化创建
MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue* obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    //多开一个空间方便区分空和满
    obj->a=(int*)malloc(sizeof(int)*(k+1));
    obj->front=0;
    obj->rear=0;
    obj->k=k;
    return obj;
}
//判断队列是否为空
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    //当队头和队尾相等时队列为空
    return obj->front==obj->rear;
}
//判断队列是否已满
bool myCircularQueueIsFull(MyCircularQueue* obj) {
    return (obj->rear+1)%(obj->k+1)==obj->front;
}

//入队
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
//判断满了没
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    obj->a[obj->rear]=value;
    obj->rear++;
    //特殊情况
    (obj->rear)%=(obj->k+1);
    return true;
}

//出队
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    //判断队列是不是空的
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    obj->front++;
    特殊情况
    (obj->front)%=(obj->k+1);
    return true;
}

//获取队头元素
int myCircularQueueFront(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    return obj->a[obj->front];
}
//获取队尾元素
//rear是队尾元素下一个元素的下标,所以队尾元素的下标为rear-1
//但当rear等于0的时候队尾元素下标为k,需要特殊处理
int myCircularQueueRear(MyCircularQueue* obj) {
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    // if(obj->rear==0)
    // {
    //     return obj->a[obj->k];
    // }else
    // {
    //     return obj->a[obj->rear-1];
    // }
    return obj->a[((obj->rear)+(obj->k))%(obj->k+1)];
}

//销毁队列
void myCircularQueueFree(MyCircularQueue* obj) {
    free(obj->a);
    free(obj);
}

六、栈与队列的相互实现

1、用栈实现队列

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

思路:

用两个栈实现先入先出队列,当有元素入队时,就是在pushst入栈

当出队时,将pushst中元素依次出栈放进popst中,然后对popst进行出栈操作

代码实现:

用的是前面自己实现的栈来实现的

typedef struct {
    ST pushst;
    ST popst;
} MyQueue;
MyQueue* myQueueCreate() {
    MyQueue* obj=(MyQueue*)malloc(sizeof(MyQueue));
    STInit(&obj->pushst);
    STInit(&obj->popst);
    return obj;
}
void myQueuePush(MyQueue* obj, int x) {
    STPush(&obj->pushst,x);
}
int myQueuePeek(MyQueue* obj) {
    if(STEmpty(&obj->popst))
    {
        while(!STEmpty(&obj->pushst))
        {
            STPush(&obj->popst,STTop(&obj->pushst));
            STPop(&obj->pushst);
        }
    }
    return STTop(&obj->popst);
}
int myQueuePop(MyQueue* obj) {
    int ret=myQueuePeek(obj);
    STPop(&obj->popst);
    return ret;
}
bool myQueueEmpty(MyQueue* obj) {
    return STEmpty(&obj->pushst)&&STEmpty(&obj->popst);
}
void myQueueFree(MyQueue* obj) {
    STDestroy(&obj->pushst);
    STDestroy(&obj->popst);
    free(obj);
}

2、用队列实现栈

实现 MyStack 类:

  • void push(int x) 将元素 x 压入栈顶。
  • int pop() 移除并返回栈顶元素。
  • int top() 返回栈顶元素。
  • boolean empty() 如果栈是空的,返回 true ;否则,返回 false 。

思路:

用两个队列q1和q2来实现一个后入先出的栈

入栈:放进不为空的那个队列

出栈:不为空队列的前n-1个出队列插入空队列,删除剩下的一个即可

代码实现:

用的是前面自己实现的队列来实现的

typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
MyStack* myStackCreate() {
    MyStack* p=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&p->q1);
    QueueInit(&p->q2);
    return p;
}
void myStackPush(MyStack* obj, int x) {
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}
int myStackPop(MyStack* obj) {
    Queue* empty=&obj->q1;
    Queue* noEmpty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noEmpty=&obj->q1;
    }
    while(QueueSize(noEmpty)>1)
    {
        QueuePush(empty,QueueFront(noEmpty));
        QueuePop(noEmpty);
    }
    int top=QueueFront(noEmpty);
    QueuePop(noEmpty);
    return top;
}
int myStackTop(MyStack* obj) {
    if(!QueueEmpty(&obj->q1))
    {
        return QueueBack(&obj->q1);
    }
    else
    {
        return QueueBack(&obj->q2);
    }
}
bool myStackEmpty(MyStack* obj) {
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) {
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}
目录
相关文章
|
3天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
16 5
【数据结构】优先级队列(堆)从实现到应用详解
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
12天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
存储 安全 编译器
缓冲区溢出之栈溢出(Stack Overflow
【8月更文挑战第18天】
55 3
|
18天前
crash —— 获取内核地址布局、页大小、以及栈布局
crash —— 获取内核地址布局、页大小、以及栈布局
|
19天前
|
存储 程序员 C语言
堆和栈之间有什么区别
【9月更文挑战第1天】堆和栈之间有什么区别
89 0
|
28天前
|
机器学习/深度学习 消息中间件 缓存
栈与队列的实现
栈与队列的实现
37 0
|
1月前
|
算法 C语言 C++
【practise】栈的压入和弹出序列
【practise】栈的压入和弹出序列