Python 生成器模式讲解和代码示例

简介: Python 生成器模式讲解和代码示例

使用示例生成器模式是 Python 世界中的一个著名模式 当你需要创建一个可能有许多配置选项的对象时 该模式会特别有用

识别方法生成器模式可以通过类来识别 它拥有一个构建方法和多个配置结果对象的方法 生成器方法通常支持方法链 例如 someBuilder.setValueA(1).setValueB(2).create()

01概念示例

本例说明了生成器设计模式的结构并重点回答了下面的问题

  • 它由哪些类组成
  • 这些类扮演了哪些角色
  • 模式中的各个元素会以何种方式相互关联

main.py: 概念示例

from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any


classBuilder(ABC):

 

"""
    The Builder interface specifies methods for creating the different parts of
    the Product objects.
    """
    @property
    @abstractmethod
    def product(self) -> None:
        pass
    @abstractmethod
    def produce_part_a(self) -> None:
        pass
    @abstractmethod
    def produce_part_b(self) -> None:
        pass
    @abstractmethod
    def produce_part_c(self) -> None:
        pass


classConcreteBuilder1(Builder):

 

"""
    The Concrete Builder classes follow the Builder interface and provide
    specific implementations of the building steps. Your program may have
    several variations of Builders, implemented differently.
    """

   def__init__(self) ->None:

   

"""
        A fresh builder instance should contain a blank product object, which is
        used in further assembly.
        """
        self.reset()

   defreset(self) ->None:

     

self._product = Product1()


   @property

   defproduct(self) ->Product1:

   

"""
        Concrete Builders are supposed to provide their own methods for
        retrieving results. That's because various types of builders may create
        entirely different products that don't follow the same interface.
        Therefore, such methods cannot be declared in the base Builder interface
        (at least in a statically typed programming language).
        Usually, after returning the end result to the client, a builder
        instance is expected to be ready to start producing another product.
        That's why it's a usual practice to call the reset method at the end of
        the `getProduct` method body. However, this behavior is not mandatory,
        and you can make your builders wait for an explicit reset call from the
        client code before disposing of the previous result.
        """

 

product = self._product
        self.reset()
        return product
    def produce_part_a(self) -> None:
        self._product.add("PartA1")
    def produce_part_b(self) -> None:
        self._product.add("PartB1")
    def produce_part_c(self) -> None:
        self._product.add("PartC1")


classProduct1():

"""
    It makes sense to use the Builder pattern only when your products are quite
    complex and require extensive configuration.
    Unlike in other creational patterns, different concrete builders can produce
    unrelated products. In other words, results of various builders may not
    always follow the same interface.
    """
    def __init__(self) -> None:
        self.parts = []
    def add(self, part: Any) -> None:
        self.parts.append(part)
    def list_parts(self) -> None:
        print(f"Product parts: {', '.join(self.parts)}", end="")

classDirector:

 

"""
    The Director is only responsible for executing the building steps in a
    particular sequence. It is helpful when producing products according to a
    specific order or configuration. Strictly speaking, the Director class is
    optional, since the client can control builders directly.
    """
    def __init__(self) -> None:
        self._builder = None
    @property
    def builder(self) -> Builder:
        return self._builder
    @builder.setter
    def builder(self, builder: Builder) -> None:
        """
        The Director works with any builder instance that the client code passes
        to it. This way, the client code may alter the final type of the newly
        assembled product.
        """
        self._builder = builder
    """
    The Director can construct several product variations using the same
    building steps.
    """
    def build_minimal_viable_product(self) -> None:
        self.builder.produce_part_a()
    def build_full_featured_product(self) -> None:
        self.builder.produce_part_a()
        self.builder.produce_part_b()
        self.builder.produce_part_c()
if __name__ == "__main__":
    """
    The client code creates a builder object, passes it to the director and then
    initiates the construction process. The end result is retrieved from the
    builder object.
    """
    director = Director()
    builder = ConcreteBuilder1()
    director.builder = builder
    print("Standard basic product: ")
    director.build_minimal_viable_product()
    builder.product.list_parts()
    print("\n")
    print("Standard full featured product: ")
    director.build_full_featured_product()
    builder.product.list_parts()
    print("\n")
    #Remember, the Builder pattern can be used without a Director class.
    print("Custom product: ")
    builder.produce_part_a()
    builder.produce_part_b()
    builder.product.list_parts()

Output.txt: 执行结果

Standard basic product: 
Product parts: PartA1
Standard full featured product: 
Product parts: PartA1, PartB1, PartC1
Custom product: 
Product parts: PartA1, PartB1
相关文章
|
1月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
131 70
|
18天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
58 33
|
19天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
40 10
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
78 8
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
60 2
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
59 6
|
4月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
70 2
|
3月前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
159 5