推荐系统入门之使用协同过滤实现商品推荐
1.开通机器学习PAI服务
1. 使用您的阿里云账号登录阿里云官网。
2. 在顶部的导航栏,依次将鼠标悬停到产品>人工智能处,然后单击机器学习平台PAI。
3. 在机器学习PAI控制台首页,单击立即开通。
4. 在服务开通页面,选择要开通的机器学习PAI服务所在的区域,例如华东2(上海),然后单击页面下方的立即购买。
5. 在订单确认页面,仔细阅读《机器学习(PAI)服务协议》后,勾选我已阅读并同意,最后单击立即开通。
6. 开通成功后,单击前往PAI管理控制台。
2.创建PAI Studio项目
1. 在控制台左侧导航栏,单击可视化建模(Studio)。
2. 在PAI Studio页面单击创建项目。
3. 在右侧弹出的创建项目页面,MaxCompute选择按量付费,填入项目名称,然后单击确定。
PAI Studio底层计算依赖MaxCompute,如果您未开通过当前区域的MaxCompute,请按照页面提示去购买。
a. 单击购买。
b. 选择步骤一开通的机器学习PAI服务所在区域,例如华东2(上海),然后单击立即购买。
c. 仔细阅读《大数据计算服务MaxCompute(按量计算)服务协议》后,勾选我已阅读并同意,最后单击立即开通。
d. 开通成功后返回PAI Studio控制台页面,再次单击创建项目,在创建项目页面选择MaxCompute付费方式为按量付费,然后填入项目名称,最后单击确认。
4. 项目创建需要1分钟左右进行初始化,等待项目操作列出现进入机器学习,表示项目创建完成。
3.创建实验
1. 单击左侧导航栏的首页。
2. 在模板列表找到【推荐算法】商品推荐,然后单击从模板创建。
3. 在弹出的新建实验框,单击确定。
4.查看实验数据
1. 右键单击cf_训练_data节点,然后单击查看数据。
源数据的字段解释如下:
字段名 |
含义 |
类型 |
描述 |
user_id |
用户编号 |
STRING |
购物的用户ID。 |
item_id |
物品编号 |
STRING |
被购买物品的编号。 |
active_type |
购物行为 |
STRING |
|
active_date |
购物时间 |
STRING |
购物发生的时间。 |
可以看到训练数据为7月份以前的用户购买行为数据。
2. 右键单击cf_结果_data,然后单击查看数据。
可以看到结果数据为7月份以后的用户购买行为数据。
5.运行实验
1. 单击左上角运行。
2. 请耐心等到3~5分钟,实验运行完成如下所示。
6.查看实验结果
1. 右键单击join-1节点,然后单击查看数据。
表中similar_item字段为经过协同过滤算法计算得出的该用户购买可能性最大的商品。
2. 单击全表统计-1节点,然后单击查看数据。
表1统计了根据协同过滤算法推荐的商品数量,共有18065个商品可推荐。
3. 单击全表统计-2节点,然后单击查看数据。
表2统计了7月份真实购买行为数据中与经过协同过滤算法所推荐的商品的命中数量,可以看到有60个推荐的商品被购买。
实验链接:https://developer.aliyun.com/adc/scenario/de9047c2055643938aea1ff228d6b207