大数据Spark RDD持久化和Checkpoint

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据Spark RDD持久化和Checkpoint

1 缓存函数

在实际开发中某些RDD的计算或转换可能会比较耗费时间,如果这些RDD后续还会频繁的被使用到,那么可以将这些RDD进行持久化/缓存,这样下次再使用到的时候就不用再重新计算了,提高了程序运行的效率。

可以将RDD数据直接缓存到内存中,函数声明如下:

但是实际项目中,不会直接使用上述的缓存函数,RDD数据量往往很多,内存放不下的。在实

际的项目中缓存RDD数据时,往往使用如下函数,依据具体的业务和数据量,指定缓存的级别:

2 缓存级别

Spark框架中对数据缓存可以指定不同的级别,对于开发来说至关重要,如下所示:

实际项目中缓存数据时,往往选择如下两种级别:

缓存函数与Transformation函数一样,都是Lazy操作,需要Action函数触发,通常使用count

函数触发。

3 释放缓存

当缓存的RDD数据,不再被使用时,考虑释资源,使用如下函数:

4 何时缓存数据

在实际项目开发中,什么时候缓存RDD数据,最好呢???

  • 第一点:当某个RDD被使用多次的时候,建议缓存此RDD数据
  1. 比如,从HDFS上读取网站行为日志数据,进行多维度的分析,最好缓存数据
  • 第二点:当某个RDD来之不易,并且使用不止一次,建议缓存此RDD数据
  1. 比如,从HBase表中读取历史订单数据,与从MySQL表中商品和用户维度信息数据,进行
    关联Join等聚合操作,获取RDD:etlRDD,后续的报表分析使用此RDD,此时建议缓存RDD
    数据
  2. 案例:etlRDD.persist(StoageLeval.MEMORY_AND_DISK_2)
    演示范例代码:
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}
/**
 * RDD中缓存函数,将数据缓存到内存或磁盘、释放缓存
 */
object SparkCacheTest {
  def main(args: Array[String]): Unit = {
    // 创建应用程序入口SparkContext实例对象
    val sc: SparkContext = {
      // 1.a 创建SparkConf对象,设置应用的配置信息
      val sparkConf: SparkConf = new SparkConf()
        .setAppName(this.getClass.getSimpleName.stripSuffix("$"))
        .setMaster("local[2]")
      // 1.b 传递SparkConf对象,构建Context实例
      new SparkContext(sparkConf)
    }
    // 读取文本文件数据
    val inputRDD: RDD[String] = sc.textFile("datas/wordcount/wordcount.data", minPartitions = 2)
    // 缓存数据: 将数据缓存至内存
    inputRDD.cache()
    inputRDD.persist()
    // 使用Action函数触发缓存
    println(s"Count = ${inputRDD.count()}")
    // 释放缓存
    inputRDD.unpersist()
    // 缓存数据:选择缓存级别
    /*
    val NONE = new StorageLevel(false, false, false, false)
    val DISK_ONLY = new StorageLevel(true, false, false, false)
    val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
    val MEMORY_ONLY = new StorageLevel(false, true, false, true)
    val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
    val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
    val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
    val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
    val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
    val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
    val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
    val OFF_HEAP = new StorageLevel(true, true, true, false, 1)
    */
    inputRDD.persist(StorageLevel.MEMORY_AND_DISK)
    println(s"count: ${inputRDD.count()}")
    // 应用程序运行结束,关闭资源
    sc.stop()
  }
}

5 RDD Checkpoint

RDD 数据可以持久化,但是持久化/缓存可以把数据放在内存中,虽然是快速的,但是也是最不可靠的;也可以把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏等。

Checkpoint的产生就是为了更加可靠的数据持久化,在Checkpoint的时候一般把数据放在在HDFS上,这就天然的借助了HDFS天生的高容错、高可靠来实现数据最大程度上的安全,实现了RDD的容错和高可用。

在Spark Core中对RDD做checkpoint,可以切断做checkpoint RDD的依赖关系,将RDD数据

保存到可靠存储(如HDFS)以便数据恢复;

0f91d4b684f342e399b8fd70ea630489.png

演示范例代码如下:

import org.apache.spark.{SparkConf, SparkContext}
/**
 * RDD数据Checkpoint设置,案例演示
 */
object SparkCkptTest {
  def main(args: Array[String]): Unit = {
    // 创建应用程序入口SparkContext实例对象
    val sc: SparkContext = {
      // 1.a 创建SparkConf对象,设置应用的配置信息
      val sparkConf: SparkConf = new SparkConf()
        .setAppName(this.getClass.getSimpleName.stripSuffix("$"))
        .setMaster("local[2]")
      // 1.b 传递SparkConf对象,构建Context实例
      new SparkContext(sparkConf)
    }
    sc.setLogLevel("WARN")
    // TODO: 设置检查点目录,将RDD数据保存到那个目录
    sc.setCheckpointDir("datas/spark/ckpt/")
    // 读取文件数据
    val datasRDD = sc.textFile("datas/wordcount/wordcount.data")
    // TODO: 调用checkpoint函数,将RDD进行备份,需要RDD中Action函数触发
    datasRDD.checkpoint()
    datasRDD.count()
    // TODO: 再次执行count函数, 此时从checkpoint读取数据
    datasRDD.count()
    // 应用程序运行结束,关闭资源
    Thread.sleep(100000)
    sc.stop()
  }
}

持久化和Checkpoint的区别:


1)、存储位置

Persist 和 Cache 只能保存在本地的磁盘和内存中(或者堆外内存);

Checkpoint 可以保存数据到 HDFS 这类可靠的存储上;

2)、生命周期

Cache和Persist的RDD会在程序结束后会被清除或者手动调用unpersist方法;

Checkpoint的RDD在程序结束后依然存在,不会被删除;

3)、Lineage(血统、依赖链、依赖关系)

Persist和Cache,不会丢掉RDD间的依赖链/依赖关系,因为这种缓存是不可靠的,如果出

现了一些错误(例如 Executor 宕机),需要通过回溯依赖链重新计算出来;

Checkpoint会斩断依赖链,因为Checkpoint会把结果保存在HDFS这类存储中,更加的安全可靠,一般不需要回溯依赖链;

24472a3c01c3443f844e1f4457c4014f.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
139 3
|
20天前
|
机器学习/深度学习 分布式计算 大数据
Spark 适合解决多种类型的大数据处理问题
【9月更文挑战第1天】Spark 适合解决多种类型的大数据处理问题
31 3
|
24天前
|
分布式计算 大数据 Apache
跨越界限:当.NET遇上Apache Spark,大数据世界的新篇章如何谱写?
【8月更文挑战第28天】随着信息时代的发展,大数据已成为推动企业决策、科研与技术创新的关键力量。Apache Spark凭借其卓越的分布式计算能力和多功能数据处理特性,在大数据领域占据重要地位。然而,对于.NET开发者而言,如何在Spark生态中发挥自身优势成为一个新课题。为此,微软与Apache Spark社区共同推出了.NET for Apache Spark,使开发者能用C#、F#等语言编写Spark应用,不仅保留了Spark的强大功能,还融合了.NET的强类型系统、丰富库支持及良好跨平台能力,极大地降低了学习门槛并拓展了.NET的应用范围。
42 3
|
29天前
|
分布式计算 大数据 数据处理
Apache Spark的应用与优势:解锁大数据处理的无限潜能
【8月更文挑战第23天】Apache Spark以其卓越的性能、易用性、通用性、弹性与可扩展性以及丰富的生态系统,在大数据处理领域展现出了强大的竞争力和广泛的应用前景。随着大数据技术的不断发展和普及,Spark必将成为企业实现数字化转型和业务创新的重要工具。未来,我们有理由相信,Spark将继续引领大数据处理技术的发展潮流,为企业创造更大的价值。
|
1月前
|
分布式计算 Serverless 数据处理
|
21天前
|
Java Spring API
Spring框架与GraphQL的史诗级碰撞:颠覆传统,重塑API开发的未来传奇!
【8月更文挑战第31天】《Spring框架与GraphQL:构建现代API》介绍了如何结合Spring框架与GraphQL构建高效、灵活的API。首先通过引入`spring-boot-starter-data-graphql`等依赖支持GraphQL,然后定义查询和类型,利用`@GraphQLQuery`等注解实现具体功能。Spring的依赖注入和事务管理进一步增强了GraphQL服务的能力。示例展示了从查询到突变的具体实现,证明了Spring与GraphQL结合的强大潜力,适合现代API设计与开发。
39 0
|
1月前
|
分布式计算 Hadoop 大数据
Spark 与 Hadoop 的大数据之战:一场惊心动魄的技术较量,决定数据处理的霸权归属!
【8月更文挑战第7天】无论是 Spark 的高效内存计算,还是 Hadoop 的大规模数据存储和处理能力,它们都为大数据的发展做出了重要贡献。
62 2
|
2月前
|
分布式计算 Hadoop 大数据
Hadoop与Spark在大数据处理中的对比
【7月更文挑战第30天】Hadoop和Spark在大数据处理中各有优势,选择哪个框架取决于具体的应用场景和需求。Hadoop适合处理大规模数据的离线分析,而Spark则更适合需要快速响应和迭代计算的应用场景。在实际应用中,可以根据数据处理的需求、系统的可扩展性、成本效益等因素综合考虑,选择适合的框架进行大数据处理。
|
30天前
|
大数据 RDMA
神龙大数据加速引擎MRACC问题之MRACC-Spark利用eRDMA近网络优化插件来提升性能如何解决
神龙大数据加速引擎MRACC问题之MRACC-Spark利用eRDMA近网络优化插件来提升性能如何解决
31 0
|
1月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
37 0