快速上手并跑通AnalyticDB PostgreSQL版TPC-H测试

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 本案例介绍如何创建AnalyticDB PostgreSQL实例、生成测试数据、建表、导入数据,并跑通TPC-H查询。

快速上手并跑通AnalyticDB PostgreSQL版TPC-H测试

1. 生成测试数据

  1. SSH进入ECS实例,执行如下语句,下载TPC-H dbgen代码到数据盘并编译。
wget https://github.com/electrum/tpch-dbgen/archive/refs/heads/master.zip
yum install -y unzip zip
unzip master.zip
cd tpch-dbgen-master/
echo '#define EOL_HANDLING 1' >> config.h # 消除生成数据末尾的'|'
make
./dbgen --help
  1. 执行如下语句,生成1TB测试数据集。建议使用分片文件(分片数与AnalyticDB PostgreSQL版实例节点数量一致)。

后台运行dbgen程序时间较长,可使用ps -fHU $USER | grep dbgen命令查看进度,确保dbgen程序运行完成。

for((i=1;i<=32;i++));
do
    ./dbgen -s 1000 -S $i -C 32 -f &
done

2. 创建表

  1. 登录AnalyticDB PostgreSQL版控制台,单击实例名称
  2. 左侧菜单选择帐号管理,创建初始帐号并设置密码。
  3. 左侧菜单选择数据安全性,单击添加白名单分组,将ECS实例添加到白名单。
  4. SSH进入ECS实例,下载psql客户端(下载链接:ADBPG_client_package_el7)并安装。
wget http://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/assets/attach/181125/cn_zh/1598426198114/adbpg_client_package.el7.x86_64.tar.gz
tar -xzvf adbpg_client_package.el7.x86_64.tar.gz
  1. 通过psql连接数据库。
cd adbpg_client_package/bin
./psql -h<连接地址> -U<用户名> <数据库>

<连接地址>为下图所示内网地址,<用户名>为刚创建的初始账号,<数据库>与初始账号同名。

此时需输入密码,可编辑~/.pgpass保存后进行免密连接。保存后执行chmod 0600 ~/.pgpass设置文件权限。

<连接地址>:5432:<用户名>:<数据库>:<密码>
  1. 执行如下语句创建8张表。
CREATE TABLE NATION (
    N_NATIONKEY  INTEGER NOT NULL,
    N_NAME       CHAR(25) NOT NULL,
    N_REGIONKEY  INTEGER NOT NULL,
    N_COMMENT    VARCHAR(152)
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED Replicated
;
CREATE TABLE REGION (
    R_REGIONKEY  INTEGER NOT NULL,
    R_NAME       CHAR(25) NOT NULL,
    R_COMMENT    VARCHAR(152)
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED Replicated
;
CREATE TABLE PART (
    P_PARTKEY     INTEGER NOT NULL,
    P_NAME        VARCHAR(55) NOT NULL,
    P_MFGR        CHAR(25) NOT NULL,
    P_BRAND       CHAR(10) NOT NULL,
    P_TYPE        VARCHAR(25) NOT NULL,
    P_SIZE        INTEGER NOT NULL,
    P_CONTAINER   CHAR(10) NOT NULL,
    P_RETAILPRICE DECIMAL(15,2) NOT NULL,
    P_COMMENT     VARCHAR(23) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (P_PARTKEY)
;
CREATE TABLE SUPPLIER (
    S_SUPPKEY     INTEGER NOT NULL,
    S_NAME        CHAR(25) NOT NULL,
    S_ADDRESS     VARCHAR(40) NOT NULL,
    S_NATIONKEY   INTEGER NOT NULL,
    S_PHONE       CHAR(15) NOT NULL,
    S_ACCTBAL     DECIMAL(15,2) NOT NULL,
    S_COMMENT     VARCHAR(101) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (S_SUPPKEY)
;
CREATE TABLE PARTSUPP (
    PS_PARTKEY     INTEGER NOT NULL,
    PS_SUPPKEY     INTEGER NOT NULL,
    PS_AVAILQTY    INTEGER NOT NULL,
    PS_SUPPLYCOST  DECIMAL(15,2)  NOT NULL,
    PS_COMMENT     VARCHAR(199) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (PS_PARTKEY)
;
CREATE TABLE CUSTOMER (
    C_CUSTKEY     INTEGER NOT NULL,
    C_NAME        VARCHAR(25) NOT NULL,
    C_ADDRESS     VARCHAR(40) NOT NULL,
    C_NATIONKEY   INTEGER NOT NULL,
    C_PHONE       CHAR(15) NOT NULL,
    C_ACCTBAL     DECIMAL(15,2)   NOT NULL,
    C_MKTSEGMENT  CHAR(10) NOT NULL,
    C_COMMENT     VARCHAR(117) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (C_CUSTKEY)
;
CREATE TABLE ORDERS (
    O_ORDERKEY       BIGINT NOT NULL,
    O_CUSTKEY        INTEGER NOT NULL,
    O_ORDERSTATUS    'char' NOT NULL,
    O_TOTALPRICE     DECIMAL(15,2) NOT NULL,
    O_ORDERDATE      DATE NOT NULL,
    O_ORDERPRIORITY  CHAR(15) NOT NULL,
    O_CLERK          CHAR(15) NOT NULL,
    O_SHIPPRIORITY   INTEGER NOT NULL,
    O_COMMENT        VARCHAR(79) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (O_ORDERKEY)
ORDER BY(O_ORDERDATE)
;
CREATE TABLE LINEITEM (
    L_ORDERKEY    BIGINT NOT NULL,
    L_PARTKEY     INTEGER NOT NULL,
    L_SUPPKEY     INTEGER NOT NULL,
    L_LINENUMBER  INTEGER NOT NULL,
    L_QUANTITY    DECIMAL(15,2) NOT NULL,
    L_EXTENDEDPRICE  DECIMAL(15,2) NOT NULL,
    L_DISCOUNT    DECIMAL(15,2) NOT NULL,
    L_TAX         DECIMAL(15,2) NOT NULL,
    L_RETURNFLAG  'char' NOT NULL,
    L_LINESTATUS  'char' NOT NULL,
    L_SHIPDATE    DATE NOT NULL,
    L_COMMITDATE  DATE NOT NULL,
    L_RECEIPTDATE DATE NOT NULL,
    L_SHIPINSTRUCT CHAR(25) NOT NULL,
    L_SHIPMODE     CHAR(10) NOT NULL,
    L_COMMENT      VARCHAR(44) NOT NULL
)
WITH (APPENDONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=LZ4, COMPRESSLEVEL=9)
DISTRIBUTED BY (L_ORDERKEY)
ORDER BY(L_SHIPDATE)
;

3. 导入数据

  1. 执行如下语句,将nation和region两张小表通过COPY本地文件的方式进行导入。
yinc2=> \copy nation from '<tbl文件的实际路径>' DELIMITER '|';
COPY 25
yinc2=> \copy region from '<tbl文件的实际路径>' DELIMITER '|';
COPY 5
  1. 执行如下语句下载ossutil。
wget http://gosspublic.alicdn.com/ossutil/1.7.3/ossutil64
  1. 执行如下语句修改文件执行权限。
chmod 755 ossutil64
  1. 执行如下语句,依次将其余6个表的.tbl文件通过ossutil上传到OSS。
ls <table_name>.tbl* | while read line;
do
~/ossutil64 -e <EndPoint> -i <AccessKey ID> -k <Access Key Secret> cp $line oss://<oss bucket>/<目录>/ &
done
  1. 上传完毕后,执行如下语句,将数据从OSS导入表。
COPY customer
FROM 'oss://<oss bucket>/<目录>/customer.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
'null' ''
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;
COPY lineitem
FROM 'oss://<oss bucket>/<目录>/lineitem.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
'null' ''
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;
-- lineitem表定义了排序列,数据导入完成后可对数据进行聚簇排序
sort lineitem;
COPY orders
FROM 'oss://<oss bucket>/<目录>/orders.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
'null' ''
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;
-- orders表定义了排序列,数据导入完成后可对数据进行聚簇排序
sort orders;
COPY part
FROM 'oss://<oss bucket>/<目录>/part.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
'null' ''
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;
COPY supplier
FROM 'oss://<oss bucket>/<目录>/supplier.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
'null' ''
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;
COPY partsupp
FROM 'oss://<oss bucket>/<目录>/partsupp.tbl'
ACCESS_KEY_ID '<AccessKey ID>'
SECRET_ACCESS_KEY '<Access Key Secret>'
FORMAT AS text
'delimiter' '|'
ENDPOINT '<EndPoint>'
FDW 'oss_fdw'
;

4. 执行查询

  • 方法一:

1)下载22条查询并解压到~/tpch_query目录。下载链接:tpch_query.tar.gz

2)使用如下query.sh shell脚本测试,执行全部查询,并记录每条耗时和总耗时。

#!/bin/bash
total_cost=0
for i in {1..22}
do
        echo 'begin run Q${i}, tpch_query/q$i.sql , `date`'
        begin_time=`date +%s.%N`
        ./psql ${实例连接地址} -p ${端口号} -U ${数据库用户} -f ~/tpch_query/q${i}.sql > ~/log/log_q${i}.out
        rc=$?
        end_time=`date +%s.%N`
        cost=`echo '$end_time-$begin_time'|bc`
        total_cost=`echo '$total_cost+$cost'|bc`
        if [ $rc -ne 0 ] ; then
              printf 'run Q%s fail, cost: %.2f, totalCost: %.2f, `date`\n' $i $cost $total_cost
         else
              printf 'run Q%s succ, cost: %.2f, totalCost: %.2f, `date`\n' $i $cost $total_cost
         fi
done

3)后台运行query.sh(确保~/.pgpass已设置)。

nohup bash ~/query.sh > /tmp/tpch.log &

4)查看结果。

cat /tmp/tpch.log

  • 方法二:可以通过psql等其他客户端逐条执行查询SQL。
--创建向量化计算引擎Laser插件
create extension if not exists laser;
-- Q1
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    l_returnflag,
    l_linestatus,
    sum(l_quantity) as sum_qty,
    sum(l_extendedprice) as sum_base_price,
    sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
    sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,
    avg(l_quantity) as avg_qty,
    avg(l_extendedprice) as avg_price,
    avg(l_discount) as avg_disc,
    count(*) as count_order
from
    lineitem
where
    l_shipdate <= date '1998-12-01' - interval '93 day'
group by
    l_returnflag,
    l_linestatus
order by
    l_returnflag,
    l_linestatus;
-- Q2
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    s_acctbal,
    s_name,
    n_name,
    p_partkey,
    p_mfgr,
    s_address,
    s_phone,
    s_comment
from
    part,
    supplier,
    partsupp,
    nation,
    region
where
    p_partkey = ps_partkey
    and s_suppkey = ps_suppkey
    and p_size = 23
    and p_type like '%STEEL'
    and s_nationkey = n_nationkey
    and n_regionkey = r_regionkey
    and r_name = 'EUROPE'
    and ps_supplycost = (
        select
            min(ps_supplycost)
        from
            partsupp,
            supplier,
            nation,
            region
        where
            p_partkey = ps_partkey
            and s_suppkey = ps_suppkey
            and s_nationkey = n_nationkey
            and n_regionkey = r_regionkey
            and r_name = 'EUROPE'
    )
order by
    s_acctbal desc,
    n_name,
    s_name,
    p_partkey
limit 100;
-- Q3
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    l_orderkey,
    sum(l_extendedprice * (1 - l_discount)) as revenue,
    o_orderdate,
    o_shippriority
from
    customer,
    orders,
    lineitem
where
    c_mktsegment = 'MACHINERY'
    and c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate < date '1995-03-24'
    and l_shipdate > date '1995-03-24'
group by
    l_orderkey,
    o_orderdate,
    o_shippriority
order by
    revenue desc,
    o_orderdate
limit 10;
-- Q4
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    o_orderpriority,
    count(*) as order_count
from
    orders
where
    o_orderdate >= date '1996-08-01'
    and o_orderdate < date '1996-08-01' + interval '3' month
    and exists (
        select
            *
        from
            lineitem
        where
            l_orderkey = o_orderkey
            and l_commitdate < l_receiptdate
    )
group by
    o_orderpriority
order by
    o_orderpriority;
-- Q6
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    sum(l_extendedprice * l_discount) as revenue
from
    lineitem
where
    l_shipdate >= date '1994-01-01'
    and l_shipdate < date '1994-01-01' + interval '1' year
    and l_discount between 0.06 - 0.01 and 0.06 + 0.01
    and l_quantity < 24;
-- Q7
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    supp_nation,
    cust_nation,
    l_year,
    sum(volume) as revenue
from
    (
        select
            n1.n_name as supp_nation,
            n2.n_name as cust_nation,
            extract(year from l_shipdate) as l_year,
            l_extendedprice * (1 - l_discount) as volume
        from
            supplier,
            lineitem,
            orders,
            customer,
            nation n1,
            nation n2
        where
            s_suppkey = l_suppkey
            and o_orderkey = l_orderkey
            and c_custkey = o_custkey
            and s_nationkey = n1.n_nationkey
            and c_nationkey = n2.n_nationkey
            and (
                (n1.n_name = 'JORDAN' and n2.n_name = 'INDONESIA')
                or (n1.n_name = 'INDONESIA' and n2.n_name = 'JORDAN')
            )
            and l_shipdate between date '1995-01-01' and date '1996-12-31'
    ) as shipping
group by
    supp_nation,
    cust_nation,
    l_year
order by
    supp_nation,
    cust_nation,
    l_year;
-- Q8
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    o_year,
    sum(case
        when nation = 'INDONESIA' then volume
        else 0
    end) / sum(volume) as mkt_share
from
    (
        select
            extract(year from o_orderdate) as o_year,
            l_extendedprice * (1 - l_discount) as volume,
            n2.n_name as nation
        from
            part,
            supplier,
            lineitem,
            orders,
            customer,
            nation n1,
            nation n2,
            region
        where
            p_partkey = l_partkey
            and s_suppkey = l_suppkey
            and l_orderkey = o_orderkey
            and o_custkey = c_custkey
            and c_nationkey = n1.n_nationkey
            and n1.n_regionkey = r_regionkey
            and r_name = 'ASIA'
            and s_nationkey = n2.n_nationkey
            and o_orderdate between date '1995-01-01' and date '1996-12-31'
            and p_type = 'STANDARD BRUSHED BRASS'
    ) as all_nations
group by
    o_year
order by
    o_year;
-- Q9
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    nation,
    o_year,
    sum(amount) as sum_profit
from
    (
        select
            n_name as nation,
            extract(year from o_orderdate) as o_year,
            l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
        from
            part,
            supplier,
            lineitem,
            partsupp,
            orders,
            nation
        where
            s_suppkey = l_suppkey
            and ps_suppkey = l_suppkey
            and ps_partkey = l_partkey
            and p_partkey = l_partkey
            and o_orderkey = l_orderkey
            and s_nationkey = n_nationkey
            and p_name like '%chartreuse%'
    ) as profit
group by
    nation,
    o_year
order by
    nation,
    o_year desc;
-- Q10
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    c_custkey,
    c_name,
    sum(l_extendedprice * (1 - l_discount)) as revenue,
    c_acctbal,
    n_name,
    c_address,
    c_phone,
    c_comment
from
    customer,
    orders,
    lineitem,
    nation
where
    c_custkey = o_custkey
    and l_orderkey = o_orderkey
    and o_orderdate >= date '1994-08-01'
    and o_orderdate < date '1994-08-01' + interval '3' month
    and l_returnflag = 'R'
    and c_nationkey = n_nationkey
group by
    c_custkey,
    c_name,
    c_acctbal,
    c_phone,
    n_name,
    c_address,
    c_comment
order by
    revenue desc
limit 20;
-- Q11
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    ps_partkey,
    sum(ps_supplycost * ps_availqty) as value
from
    partsupp,
    supplier,
    nation
where
    ps_suppkey = s_suppkey
    and s_nationkey = n_nationkey
    and n_name = 'INDONESIA'
group by
    ps_partkey having
        sum(ps_supplycost * ps_availqty) > (
            select
                sum(ps_supplycost * ps_availqty) * 0.0001000000
            from
                partsupp,
                supplier,
                nation
            where
                ps_suppkey = s_suppkey
                and s_nationkey = n_nationkey
                and n_name = 'INDONESIA'
        )
order by
    value desc;
-- Q12
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    l_shipmode,
    sum(case
        when o_orderpriority = '1-URGENT'
            or o_orderpriority = '2-HIGH'
            then 1
        else 0
    end) as high_line_count,
    sum(case
        when o_orderpriority <> '1-URGENT'
            and o_orderpriority <> '2-HIGH'
            then 1
        else 0
    end) as low_line_count
from
    orders,
    lineitem
where
    o_orderkey = l_orderkey
    and l_shipmode in ('REG AIR', 'TRUCK')
    and l_commitdate < l_receiptdate
    and l_shipdate < l_commitdate
    and l_receiptdate >= date '1994-01-01'
    and l_receiptdate < date '1994-01-01' + interval '1' year
group by
    l_shipmode
order by
    l_shipmode;
-- Q13
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    c_count,
    count(*) as custdist
from
    (
        select
            c_custkey,
            count(o_orderkey)
        from
            customer left outer join orders on
                c_custkey = o_custkey
                and o_comment not like '%pending%requests%'
        group by
            c_custkey
    ) as c_orders (c_custkey, c_count)
group by
    c_count
order by
    custdist desc,
    c_count desc;
-- Q14
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    100.00 * sum(case
        when p_type like 'PROMO%'
            then l_extendedprice * (1 - l_discount)
        else 0
    end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue
from
    lineitem,
    part
where
    l_partkey = p_partkey
    and l_shipdate >= date '1994-11-01'
    and l_shipdate < date '1994-11-01' + interval '1' month;
-- Q15
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
create view revenue0 (supplier_no, total_revenue) as
    select
        l_suppkey,
        sum(l_extendedprice * (1 - l_discount))
    from
        lineitem
    where
        l_shipdate >= date '1997-10-01'
        and l_shipdate < date '1997-10-01' + interval '3' month
    group by
        l_suppkey;
select
    s_suppkey,
    s_name,
    s_address,
    s_phone,
    total_revenue
from
    supplier,
    revenue0
where
    s_suppkey = supplier_no
    and total_revenue = (
        select
            max(total_revenue)
        from
            revenue0
    )
order by
    s_suppkey;
drop view revenue0;
-- Q16
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    p_brand,
    p_type,
    p_size,
    count(distinct ps_suppkey) as supplier_cnt
from
    partsupp,
    part
where
    p_partkey = ps_partkey
    and p_brand <> 'Brand#44'
    and p_type not like 'SMALL BURNISHED%'
    and p_size in (36, 27, 34, 45, 11, 6, 25, 16)
    and ps_suppkey not in (
        select
            s_suppkey
        from
            supplier
        where
            s_comment like '%Customer%Complaints%'
    )
group by
    p_brand,
    p_type,
    p_size
order by
    supplier_cnt desc,
    p_brand,
    p_type,
    p_size;
-- Q17
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    sum(l_extendedprice) / 7.0 as avg_yearly
from
    lineitem,
    part
where
    p_partkey = l_partkey
    and p_brand = 'Brand#42'
    and p_container = 'JUMBO PACK'
    and l_quantity < (
        select
            0.2 * avg(l_quantity)
        from
            lineitem
        where
            l_partkey = p_partkey
    );
-- Q18
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice,
    sum(l_quantity)
from
    customer,
    orders,
    lineitem
where
    o_orderkey in (
        select
            l_orderkey
        from
            lineitem
        group by
            l_orderkey having
                sum(l_quantity) > 312
    )
    and c_custkey = o_custkey
    and o_orderkey = l_orderkey
group by
    c_name,
    c_custkey,
    o_orderkey,
    o_orderdate,
    o_totalprice
order by
    o_totalprice desc,
    o_orderdate
limit 100;
-- Q19
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    sum(l_extendedprice* (1 - l_discount)) as revenue
from
    lineitem,
    part
where
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#43'
        and p_container in ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
        and l_quantity >= 5 and l_quantity <= 5 + 10
        and p_size between 1 and 5
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#45'
        and p_container in ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
        and l_quantity >= 12 and l_quantity <= 12 + 10
        and p_size between 1 and 10
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    )
    or
    (
        p_partkey = l_partkey
        and p_brand = 'Brand#11'
        and p_container in ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
        and l_quantity >= 24 and l_quantity <= 24 + 10
        and p_size between 1 and 15
        and l_shipmode in ('AIR', 'AIR REG')
        and l_shipinstruct = 'DELIVER IN PERSON'
    );
-- Q20
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    s_name,
    s_address
from
    supplier,
    nation
where
    s_suppkey in (
        select
            ps_suppkey
        from
            partsupp
        where
            ps_partkey in (
                select
                    p_partkey
                from
                    part
                where
                    p_name like 'magenta%'
            )
            and ps_availqty > (
                select
                    0.5 * sum(l_quantity)
                from
                    lineitem
                where
                    l_partkey = ps_partkey
                    and l_suppkey = ps_suppkey
                    and l_shipdate >= date '1996-01-01'
                    and l_shipdate < date '1996-01-01' + interval '1' year
            )
    )
    and s_nationkey = n_nationkey
    and n_name = 'RUSSIA'
order by
    s_name;
-- Q21
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
    s_name,
    count(*) as numwait
from
    supplier,
    lineitem l1,
    orders,
    nation
where
    s_suppkey = l1.l_suppkey
    and o_orderkey = l1.l_orderkey
    and o_orderstatus = 'F'
    and l1.l_receiptdate > l1.l_commitdate
    and exists (
        select
            *
        from
            lineitem l2
        where
            l2.l_orderkey = l1.l_orderkey
            and l2.l_suppkey <> l1.l_suppkey
    )
    and not exists (
        select
            *
        from
            lineitem l3
        where
            l3.l_orderkey = l1.l_orderkey
            and l3.l_suppkey <> l1.l_suppkey
            and l3.l_receiptdate > l3.l_commitdate
    )
    and s_nationkey = n_nationkey
    and n_name = 'MOZAMBIQUE'
group by
    s_name
order by
    numwait desc,
    s_name
limit 100;
-- Q22
-- 开启向量加速引擎,并设置开关变量为on
set laser.enable = on;
select
        cntrycode,
        count(*) as numcust,
        sum(c_acctbal) as totacctbal
from
        (
                select
                        substring(c_phone from 1 for 2) as cntrycode,
                        c_acctbal
                from
                        customer
                where
                        substring(c_phone from 1 for 2) in
                                ('13', '31', '23', '29', '30', '18', '17')
                        and c_acctbal > (
                                select
                                        avg(c_acctbal)
                                from
                                        customer
                                where
                                        c_acctbal > 0.00
                                        and substring(c_phone from 1 for 2) in
                                                ('13', '31', '23', '29', '30', '18', '17')
                        )
                        and not exists (
                                select
                                        *
                                from
                                        orders
                                where
                                        o_custkey = c_custkey
                        )
        ) as custsale
group by
        cntrycode
order by
        cntrycode;

实验链接:https://developer.aliyun.com/adc/scenario/9a4e57e135c9427a9feba3da3268a1cd

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
8月前
|
存储 监控 Cloud Native
如何通过持续测试和调整来提高OLAP系统的性能和可扩展性?
【5月更文挑战第14天】如何通过持续测试和调整来提高OLAP系统的性能和可扩展性?
82 2
|
8月前
|
Cloud Native 关系型数据库 OLAP
云原生数据仓库产品使用合集之阿里云云原生数据仓库AnalyticDB PostgreSQL版的重分布时间主要取决的是什么
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
4月前
|
人工智能 测试技术 Python
基于 LangChain 的自动化测试用例的生成与执行
本章节详细介绍了如何利用人工智能技术自动化完成Web、App及接口测试用例的生成与执行过程,避免了手动粘贴和调整测试用例的繁琐操作。通过封装工具包与Agent,不仅提升了测试效率,还实现了从生成到执行的一体化流程。应用价值在于显著节省时间并提高测试自动化水平。
|
4月前
|
测试技术
基于LangChain手工测试用例转App自动化测试生成工具
在传统App自动化测试中,测试工程师需手动将功能测试用例转化为自动化用例。市面上多数产品通过录制操作生成测试用例,但可维护性差。本文探讨了利用大模型直接生成自动化测试用例的可能性,介绍了如何使用LangChain将功能测试用例转换为App自动化测试用例,大幅节省人力与资源。通过封装App底层工具并与大模型结合,记录执行步骤并生成自动化测试代码,最终实现高效自动化的测试流程。
|
8月前
|
运维 Cloud Native 关系型数据库
云原生数据仓库产品使用合集之原生数据仓库AnalyticDB PostgreSQL版如果是列存表的话, adb支持通过根据某个字段做upsert吗
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
5月前
|
测试技术
基于LangChain手工测试用例转Web自动化测试生成工具
该方案探索了利用大模型自动生成Web自动化测试用例的方法,替代传统的手动编写或录制方式。通过清晰定义功能测试步骤,结合LangChain的Agent和工具包,实现了从功能测试到自动化测试的转换,极大提升了效率。不仅减少了人工干预,还提高了测试用例的可维护性和实用性。
|
5月前
|
存储 算法 Cloud Native
【PolarDB-X列存魔法】揭秘TPC-H测试背后的性能优化秘籍!
【8月更文挑战第25天】阿里巴巴的云原生数据库PolarDB-X以其出色的性能、可靠性和扩展性闻名,在多种业务场景中广泛应用。尤其在列存储模式下,PolarDB-X针对分析型查询进行了优化,显著提升了数据读取效率。本文通过TPC-H基准测试探讨PolarDB-X列存执行计划的优化策略,包括高效数据扫描、专用查询算法以及动态调整执行计划等功能,以满足复杂查询的需求并提高数据分析性能。
135 1
|
5月前
|
人工智能 自然语言处理 测试技术
基于LangChain手工测试用例转接口自动化测试生成工具
本文介绍利用大语言模型自动生成接口自动化测试用例的方法。首先展示传统通过HAR文件生成测试用例的方式及其局限性,随后提出结合自然语言描述的测试需求与HAR文件来生成更全面的测试脚本。通过LangChain框架,设计特定的提示词模板,使模型能够解析测试需求文档和HAR文件中的接口信息,并据此生成Python pytest测试脚本。示例展示了正常请求、非法请求及无效路径三种测试场景的自动化脚本生成过程。最终,整合流程形成完整代码实现,帮助读者理解如何利用大模型提高测试效率和质量。
|
6月前
|
SQL 弹性计算 测试技术
实时数仓Hologres TPC-H及点查性能开箱测试
Hologres现在仍然是TPCH-30000榜单的全球第一,领先第二名高达23%,最新发布的2.2版本相比之前的1.x的版本性能大约提升100%。
|
5月前
|
C# Windows IDE
WPF入门实战:零基础快速搭建第一个应用程序,让你的开发之旅更上一层楼!
【8月更文挑战第31天】在软件开发领域,WPF(Windows Presentation Foundation)是一种流行的图形界面技术,用于创建桌面应用程序。本文详细介绍如何快速搭建首个WPF应用,包括安装.NET Framework和Visual Studio、理解基础概念、创建新项目、设计界面、添加逻辑及运行调试等关键步骤,帮助初学者顺利入门并完成简单应用的开发。
200 0

相关产品

  • 云原生数据仓库AnalyticDB MySQL版
  • 云原生数据仓库 AnalyticDB PostgreSQL版