ModelScope-Agent,助力每一位开发者搭建AI智能体

简介: ModelScope-Agent,助力每一位开发者搭建AI智能体


今天,阿里云牵头建设的AI模型社区魔搭(ModelScope)又上新了,推出适配开源大语言模型(LLM)的AI Agent开发框架ModelScope-Agent


借助ModelScope-Agent,所有开发者都可基于开源 LLM 搭建属于自己的智能体应用,最大限度释放想象力和创造力。ModelScope-Agent的代码现已开源。


AI Agent(AI智能体、AI代理)可谓当前大模型领域最热门的研究方向,它是指基于LLM的、能够使用工具自主完成特定任务的智能体。


众所周知,目前阶段的LLM存在能力边界,主要擅长处理文本任务。AI Agent将LLM与其他模型、软件等外部工具协同,便能处理真实世界中的各种复杂任务,比如接入视频生成模型,自主生产视频;接入外部软件,帮人类写邮件、订票、购物等等。


AI Agent类应用正在成为大模型创业的重要赛道,AI Agent 开发框架也应运而生。但业界现有的AI Agent 开发框架大多基于闭源 LLM 构建。为了充分释放开源 LLM 的生产力,魔搭社区自研了适配开源 LLM 的AI Agent开发框架ModelScope-Agent。简而言之,ModelScope-Agent是pilot(领航员)而非copilot(副驾驶员)。


此前,魔搭已用这套框架在社区做了“打样”,搭建 ModeScopeGPT,它能通过自然语言与用户交互、接受用户指令,通过“中枢模型”通义千问调用社区的众多AI模型API,自主完成人类布置的任务。ModeScopeGPT的调用量已超过 25 万。


(ModelScope-Agent系统架构图)


AI Agent的工作流程一般包括任务的理解、规划和执行,其中,LLM 负责任务规划、工具调用以及回复生成,是整个流程的智能中枢,好比人类的大脑。


ModelScope-Agent允许开发者自由选择智能体的“大脑”,适配百川、通义千问等各类开源模型。主流LLM能够做到“即插即用”,开发者如需专门训练LLM 以增强其工具调用能力,可以参考ModelScope-Agent开源的训练数据、训练方法、优化方案、评估方法。


ModelScope-Agent开发框架还包含记忆控制、工具使用等模块,记忆控制模块支持知识检索以及 prompt (提示词)管理,工具使用模块支持工具库、工具检索、工具定制。为了增强开源大模型工具调用能力,魔搭社区还自研了一个包含60w样本的MSAgent-Bench工具调用数据集。


大多数 AI Agent 开发框架需要手动添加工具,而ModelScope-Agent 通过调用魔搭社区上开源的文本向量模型,打造API 工具检索引擎,能让AI Agent根据用户指令自动检索相关工具。如果开发者想要新增外部工具/API,只需要在ModelScope-Agent上注册工具,即可直接调用。


开源正在成为很多头部大模型玩家的选择。未来,ModelScope-Agent 会适配更多新增的开源LLM,并将推出更多基于ModelScope-Agent开发的应用,如个人助理 Agent、Story Agent、Multi-Agent等。魔搭鼓励开发者用ModelScope-Agent探索工业制造、游戏开发、智能互联等行业的应用。


魔搭社区现已聚集20多家顶尖人工智能机构贡献的1000多个开源模型,模型下载量累计突破6000万。未来,魔搭将持续通过开源开放,推进大模型的技术发展和应用落地。阿里云希望把魔搭建设成为中国最大的大模型自由市场,持续促进中国大模型生态的繁荣。




/ END /


目录
相关文章
|
14天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
105 6
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
100 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
1月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
82 9
|
24天前
|
人工智能 开发框架 搜索推荐
AI 骁龙 PC 开发者 技术 沙龙
AI 骁龙 PC 开发者 技术 沙龙
30 1
|
1月前
|
机器学习/深度学习 人工智能 监控
利用AI提升代码质量:现代开发者的利器
【10月更文挑战第4天】在软件开发中,代码质量是项目成功的关键。本文探讨了如何利用AI提升代码的可读性、可维护性和性能。AI可通过代码审查自动化、自动化测试、性能优化和安全漏洞检测等多种方式帮助开发者。具体实践步骤包括选择合适的AI工具、集成工具、训练模型以及持续监控改进。实际应用案例如SonarQube、DeepCode等展示了AI在现代开发中的巨大潜力,预示着AI将在未来软件开发中扮演更重要角色。
|
1月前
|
机器学习/深度学习 人工智能 算法
Agent Q:具备自我学习、评估的智能体
近年来,人工智能领域取得了显著进步,特别是智能体技术备受瞩目。智能体作为AI系统核心,能自主学习、决策和执行任务,应用广泛。Agent Q作为一种具备自我学习和评估能力的智能体,通过强化学习算法,能自动优化行为策略,适应复杂环境,无需人工干预。此外,它还能根据评估指标调整策略,持续提升任务完成质量。尽管存在复杂环境适应性和计算资源消耗等挑战,Agent Q仍为智能机器人、自动驾驶等领域的应用提供了新思路,推动了AI技术的发展。论文详细内容可在此处获取:https://multion-research.s3.us-east-2.amazonaws.com/AgentQ.pdf
64 1
|
3月前
|
存储 人工智能
|
2天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
18 4
|
28天前
|
人工智能 算法 决策智能
面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述
【10月更文挑战第9天】近年来,基于大型语言模型(LLM)的智能体在软件工程领域展现出显著成效。复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布综述,分析了106篇论文,探讨了这些智能体在需求工程、代码生成、静态代码检查、测试、调试及端到端软件开发中的应用。尽管表现出色,但这些智能体仍面临复杂性、性能瓶颈和人机协作等挑战。
69 1
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验

热门文章

最新文章

下一篇
无影云桌面