无源晶振匹配电容—计算方法

简介: 无源晶振匹配电容—计算方法

以前有写过一篇文章“晶振”简单介绍了晶振的一些简单参数,今天我们来说下无源晶振的匹配电容计算方法:

640.jpg


如上图,是常见的的无源晶振常见接法,而今天来说到就是这种常见电路的电容计算方法,有两种:

A,知道晶振的负载电容Cload,需要计算Ce1与Ce2;

B,某些IC有推荐Ce1与Ce2,那么需要去求晶振的Cload,然后再去找对应的物料。


方法A:

640.jpg


如上图:Ce1=Ce2=2*[Cl-(Cs+Ci)]


其中,Ce1,Ce2为晶振外部的负载电容,也即是匹配电容

Cl为晶振规格书的负载电容

Cs为PCB板的走线、IC PAD的寄生电容的和

Ci为IC的PIN寄生电容。


计算开始:

Cl通过规格书获取,一般为20pF。

Cs与Ci采用估算值,Cstray=Cs+Ci。一直范围为3pF~7pF。

那么:Ce1(min)=Ce2(min)=2*[20-7]=26pF

Ce1(max)=Ce2(max)=2*[20-3]=34pF

则这时候在这个区间选一个容值即可,基本没多大问题。


方法B:


640.jpg

C1,C2为晶振的外部匹配电容

Cstray为trace,pad and chip的寄生电容

Cl则为我们需要的晶振参数。


计算开始:

如果chip有要求C1=C2=22pF,而Cstray范围为3pF~7pF

那么:CL=11+(3~7)pF

CL(min)=14pF,CL(max)=18pF。

则可以拿着参数去找对应的晶振型号。


总结:上面两种方法,一种是先确定了晶振的参数,然后对应去算匹配电容范围,简单方便。另外一种是根据平台推荐的匹配电容,去算晶振的参数,然后去选择对应的型号。仔细看看,这两种方法其实是一样的。


推荐阅读:

晶振


文末:秀下今天的饺子

640.jpg

相关文章
|
4月前
|
传感器 芯片
一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器
一、基本概述 TX5806是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。芯片外部元件少,使芯片成为便携式应用的理想选择。芯片可以适合 USB 电源和适配器电源工作。由于采用了内部P-MOS架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度 条件下对芯片温度加以限制。 充电电压固定于 4.2V,而充电电流可通过一个外部电阻进行设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,芯片将自动终止充电循环。当输入电压被拿掉时,芯片自动进入一个低电流状态,将电池漏电流降至 2uA 以下。芯片在有电源时也可置于停机模
34 0
一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器
|
11月前
基础运放电路专题
基础运放电路是电子电路中最基础和最常用的电路之一。基础运放电路使用运放(Operational Amplifier,简称Op Amp)作为核心元件,可以实现放大、滤波、积分、微分、比较等多种功能。以下是基础运放电路的专题介绍。 1. 运放的基本概念: 运放是一种高增益、高输入阻抗、低输出阻抗的电子放大器,通常由多个晶体管和电阻等元件组成。运放有两个输入端(正输入端和负输入端)和一个输出端,可以将输入信号放大到输出端并输出。 2. 基础运放电路的分类: 基础运放电路主要包括反馈电路、比较电路、积分电路和微分电路等。其中,反馈电路是最常见的基础运放电路,可以实现放大、滤波、振荡等多种功能。
65 0
|
3月前
常见的并联谐振应用案例
并联谐振电路在音频处理中提升音质,振动检测中评估设备状态,电磁波检测中测量频率,电力电子及无功补偿中的优化,通信信号的滤波与放大,无线电接收发射,及家用电器如电视、洗衣机的信号控制。应用广泛,从通信到家电,发挥着关键作用。
|
4月前
|
搜索推荐 芯片
遥控车模的电机控制器
该项目基于CH32V103单片机和RTT构建了一个无刷电机无感矢量控制器,利用无感矢量控制实现低噪音、高线性和效率的电机运行。硬件包括主控(CH32V103开发板)、驱动(IR2101S驱动芯片)、逆变(三相全桥逆变电路,IRF540N MOS)和采样(差分电路)模块。软件部分涉及TIM和ADC配置、矢量控制及中断处理。项目提供示例代码和附件下载。
30 2
|
4月前
|
传感器 存储 前端开发
电源常用电路:采样电路
在之前的帖子中,我们已经介绍了数字电源及其核心控制器PPEC。当然,数字电源除了包含电源拓扑电路以及数字控制核心外,还包括采样、驱动和通讯等外围电路。 本篇就先对电源的ADC采样原理和常用的采样调理电路进行介绍吧。 一、ADC采样原理 ADC(模数转换器)采样是将模拟信号按照一定的采样频率进行离散化,然后转换为数字信号的过程,通常包括采样、保持、量化和编码四个步骤。 ▍采样 采样主要实现模拟信号的离散化处理,即将连续的模拟信号转换为一系列时间间隔相等的模拟信号。 采样的间隔由采样频率决定,频率越高采样得到的信号越接近原始信号。但较高的采样频率会使得数据量增加,同时对系统的转换速度要
96 4
|
11月前
|
传感器
全差分运算放大器
全差分运算放大器(Fully Differential Operational Amplifier,简称FDA)是一种特殊的运算放大器,具有两个差分输入和两个差分输出。它的输入和输出均为差分信号,可以用于放大差分信号、抑制共模信号、降低噪音等。
168 0
|
4月前
|
芯片
灌电流与拉电流的含义及电路解析
上拉电阻是用来解决总线驱动能力不足时提供电流的,一般说法是拉电流。下拉电阻是用来吸收电流的,也就是灌电流。在数字电路中,拉电流和灌电流是衡量电路输出驱动能力(注意:拉、灌都是对输出端而言的,所以是驱动能力)的参数。 在集成电路中,拉电流输出和灌电流输出是一个很重要的概念。 一、什么是拉电流 由于数字电路的输出只有高、低(0,1)两种电平值,高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫“拉电流”。例如在使用反向器作输出显示时,当输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管
100 2
|
4月前
|
关系型数据库
内置功率 MOSFET 的高频同步整流降压开关变换器
一、基本描述 MP2315 是一款内置功率 MOSFET 的高频同步整流降压开关变换器。它提供了非常紧凑的解决方案,在宽输入范围内可实现 3A 连续输出电流,具有出色的负载和线性调整率。MP2315 在输出电流负载范围内采用同步工作模式以达到高效率。其电流控制模式提供了快速瞬态响应,并使环路更易稳定。全方位保护功能包括过流保护(OCP)和过温关断保护。MP2315 最大限度地减少了现有标准外部元器件的使用,采用节省空间的8-pin TSOT23 封装。 二、基本特性 宽工作输入电压范围:4.5V 至 24V 3A 负载电流 内置90mΩ/40mΩ低导通电阻功率 MOSFETs 低静
56 0
|
11月前
取样-保持电路的介绍
取样-保持电路(Sample and Hold Circuit) 一、引言 取样-保持电路是一种常见的电子电路,用于将模拟信号转换为数字信号。在许多应用中,需要对连续变化的模拟信号进行采样和保持,以便进一步处理和分析。取样-保持电路能够在一个时间点上获取模拟信号的样本,并将其保持在一个固定的电压值上,直到下一个采样周期开始。本文将介绍取样-保持电路的工作原理、应用领域和设计要点。 二、工作原理 取样-保持电路的基本原理是通过开关和电容器实现的。当开关打开时,电容器与输入信号相连,充电至与输入信号相等的电压。当开关关闭时,电容器断开与输入信号的连接,并将电容器上的电压保持不变。这样,取样-保
119 0
|
11月前
并联谐振
并联谐振是指在一个并联电路中,通过合适的电容和电感元件组合,使得电路在某一特定频率下呈现出阻抗最大的现象。在这个频率下,电路的阻抗仅由电容和电感的阻抗组成,而且两者相互抵消,电路呈现为纯电阻。
81 0