Elasticsearch之深入聚合数据分析的实战(二)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch之深入聚合数据分析的实战

搜索+聚合:统计指定品牌下每个颜色的销量

实际上来说,我们之前学习的搜索相关的知识,完全可以和聚合组合起来使用

select count(*)

from tvs.sales

where brand like "%长%"

group by price

es aggregation,scope,任何的聚合,都必须在搜索出来的结果数据中之行,搜索结果,就是聚合分析操作的scope

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_color": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "绿色",
          "doc_count": 1
        },
        {
          "key": "蓝色",
          "doc_count": 1
        }
      ]
    }
  }
}

cardinality去重算法以及每月销售品牌数量统计

cartinality metric,对每个bucket中的指定的field进行去重,取去重后的count,类似于count(distcint)

GET /tvs/sales/_search
{
  "size" : 0,
  "aggs" : {
      "months" : {
        "date_histogram": {
          "field": "sold_date",
          "interval": "month"
        },
        "aggs": {
          "distinct_colors" : {
              "cardinality" : {
                "field" : "brand"
              }
          }
        }
      }
  }
}
{
  "took": 70,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_sold_date": {
      "buckets": [
        {
          "key_as_string": "2016-05-01T00:00:00.000Z",
          "key": 1462060800000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-06-01T00:00:00.000Z",
          "key": 1464739200000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2016-07-01T00:00:00.000Z",
          "key": 1467331200000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-08-01T00:00:00.000Z",
          "key": 1470009600000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-09-01T00:00:00.000Z",
          "key": 1472688000000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2016-10-01T00:00:00.000Z",
          "key": 1475280000000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-11-01T00:00:00.000Z",
          "key": 1477958400000,
          "doc_count": 2,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2016-12-01T00:00:00.000Z",
          "key": 1480550400000,
          "doc_count": 0,
          "distinct_brand_cnt": {
            "value": 0
          }
        },
        {
          "key_as_string": "2017-01-01T00:00:00.000Z",
          "key": 1483228800000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        },
        {
          "key_as_string": "2017-02-01T00:00:00.000Z",
          "key": 1485907200000,
          "doc_count": 1,
          "distinct_brand_cnt": {
            "value": 1
          }
        }
      ]
    }
  }
}

percentiles百分比算法以及网站访问时延统计

需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99

tp50:50%的请求的耗时最长在多长时间

tp95:95%的请求的耗时最长在多长时间

tp99:99%的请求的耗时最长在多长时间

PUT /website
{
    "mappings": {
        "logs": {
            "properties": {
                "latency": {
                    "type": "long"
                },
                "province": {
                    "type": "keyword"
                },
                "timestamp": {
                    "type": "date"
                }
            }
        }
    }
}
POST /website/logs/_bulk
{ "index": {}}
{ "latency" : 105, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 83, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 92, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 112, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 68, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 76, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 101, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 275, "province" : "新疆", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 166, "province" : "新疆", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 654, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 389, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 302, "province" : "新疆", "timestamp" : "2016-10-29" }

pencentiles

GET /website/logs/_search 
{
  "size": 0,
  "aggs": {
    "latency_percentiles": {
      "percentiles": {
        "field": "latency",
        "percents": [
          50,
          95,
          99
        ]
      }
    },
    "latency_avg": {
      "avg": {
        "field": "latency"
      }
    }
  }
}
{
  "took": 31,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 12,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "latency_avg": {
      "value": 201.91666666666666
    },
    "latency_percentiles": {
      "values": {
        "50.0": 108.5,
        "95.0": 508.24999999999983,
        "99.0": 624.8500000000001
      }
    }
  }
}

返回字段的含义:50%的请求,在108.5ms内,不是完全准确的使用一定的算法算出来的

GET /website/logs/_search 
{
  "size": 0,
  "aggs": {
    "group_by_province": {
      "terms": {
        "field": "province"
      },
      "aggs": {
        "latency_percentiles": {
          "percentiles": {
            "field": "latency",
            "percents": [
              50,
              95,
              99
            ]
          }
        },
        "latency_avg": {
          "avg": {
            "field": "latency"
          }
        }
      }
    }
  }
}
{
  "took": 33,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 12,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_province": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "新疆",
          "doc_count": 6,
          "latency_avg": {
            "value": 314.5
          },
          "latency_percentiles": {
            "values": {
              "50.0": 288.5,
              "95.0": 587.75,
              "99.0": 640.75
            }
          }
        },
        {
          "key": "江苏",
          "doc_count": 6,
          "latency_avg": {
            "value": 89.33333333333333
          },
          "latency_percentiles": {
            "values": {
              "50.0": 87.5,
              "95.0": 110.25,
              "99.0": 111.65
            }
          }
        }
      ]
    }
  }
}

string field聚合实验以及fielddata原理初探

1、对于分词的field执行aggregation,发现报错。。。

GET /test_index/test_type/_search 
{
  "aggs": {
    "group_by_test_field": {
      "terms": {
        "field": "test_field"
      }
    }
  }
}
{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory."
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "test_index",
        "node": "4onsTYVZTjGvIj9_spWz2w",
        "reason": {
          "type": "illegal_argument_exception",
          "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory."
        }
      }
    ],
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [test_field] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory."
    }
  },
  "status": 400
}

对分词的field,直接执行聚合操作,会报错,大概意思是说,你必须要打开fielddata,然后将正排索引数据加载到内存中,才可以对分词的field执行聚合操作,而且会消耗很大的内存

2、给分词的field,设置fielddata=true,发现可以执行,但是结果却。。。

POST /test_index/_mapping/test_type 
{
  "properties": {
    "test_field": {
      "type": "text",
      "fielddata": true
    }
  }
}
{
  "test_index": {
    "mappings": {
      "test_type": {
        "properties": {
          "test_field": {
            "type": "text",
            "fields": {
              "keyword": {
                "type": "keyword",
                "ignore_above": 256
              }
            },
            "fielddata": true
          }
        }
      }
    }
  }
}
GET /test_index/test_type/_search 
{
  "size": 0, 
  "aggs": {
    "group_by_test_field": {
      "terms": {
        "field": "test_field"
      }
    }
  }
}
{
  "took": 23,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_test_field": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "test",
          "doc_count": 2
        }
      ]
    }
  }
}

如果要对分词的field执行聚合操作,必须将fielddata设置为true

3、使用内置field不分词,对string field进行聚合

GET /test_index/test_type/_search 
{
  "size": 0,
  "aggs": {
    "group_by_test_field": {
      "terms": {
        "field": "test_field.keyword"
      }
    }
  }
}
{
  "took": 3,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_test_field": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "test",
          "doc_count": 2
        }
      ]
    }
  }
}

如果对不分词的field执行聚合操作,直接就可以执行,不需要设置fieldata=true

4、分词field+fielddata的工作原理

doc value --> 不分词的所有field,可以执行聚合操作 --> 如果你的某个field不分词,那么在index-time,就会自动生成doc value --> 针对这些不分词的field执行聚合操作的时候,自动就会用doc value来执行

分词field,是没有doc value的。。。在index-time,如果某个field是分词的,那么是不会给它建立doc value正排索引的,因为分词后,占用的空间过于大,所以默认是不支持分词field进行聚合的

分词field默认没有doc value,所以直接对分词field执行聚合操作,是会报错的

对于分词field,必须打开和使用fielddata,完全存在于纯内存中。。。结构和doc value类似。。。如果是ngram或者是大量term,那么必将占用大量的内存。。。

如果一定要对分词的field执行聚合,那么必须将fielddata=true,然后es就会在执行聚合操作的时候,现场将field对应的数据,建立一份fielddata正排索引,fielddata正排索引的结构跟doc value是类似的,但是只会将fielddata正排索引加载到内存中来,然后基于内存中的fielddata正排索引执行分词field的聚合操作

如果直接对分词field执行聚合,报错,才会让我们开启fielddata=true,告诉我们,会将fielddata uninverted index,正排索引,加载到内存,会耗费内存空间

为什么fielddata必须在内存?因为大家自己思考一下,分词的字符串,需要按照term进行聚合,需要执行更加复杂的算法和操作,如果基于磁盘和os cache,那么性能会很差

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
10天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
50 5
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
46 1
|
1月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
69 0
|
1月前
|
SQL 数据采集 数据可视化
深入 Python 数据分析:高级技术与实战应用
本文系统地介绍了Python在高级数据分析中的应用,涵盖数据读取、预处理、探索及可视化等关键环节,并详细展示了聚类分析、PCA、时间序列分析等高级技术。通过实际案例,帮助读者掌握解决复杂问题的方法,提升数据分析技能。使用pandas、matplotlib、seaborn及sklearn等库,提供了丰富的代码示例,便于实践操作。
154 64
|
2天前
|
存储 SQL 监控
|
2月前
|
数据挖掘 Python
Pandas实战(1):电商购物用户行为数据分析
Pandas实战(1):电商购物用户行为数据分析
80 1
|
2月前
|
数据挖掘 Python
Pandas实战(3):电商购物用户行为数据分析
Pandas实战(3):电商购物用户行为数据分析
96 1
|
2月前
|
数据挖掘 Python
Pandas实战(2):电商购物用户行为数据分析
Pandas实战(2):电商购物用户行为数据分析
55 1
|
30天前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
72 0
|
2月前
|
存储 自然语言处理 关系型数据库
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步
聚合、补全、RabbitMQ消息同步、集群、脑裂问题、集群分布式存储、黑马旅游实现过滤和搜索补全功能
ElasticSearch基础3——聚合、补全、集群。黑马旅游检索高亮+自定义分词器+自动补全+前后端消息同步