预测知识 | 机器学习预测模型局限性

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 预测知识 | 机器学习预测模型局限性

预测知识 | 机器学习预测模型局限性

@TOC

问题描述

  • 数据基础设施:要构建模型,必须有数据,且有多来源的大数据。这一切都离不开数据基础设施的建设和发展。
  • 错误数据输入:数据质量是任何分析的基石,如果数据的数据质量很差甚至错误,那么得到的结果也将是不可靠或错误的,正所谓garbage in,garbage out!因此,高质量数据来源是人工智能研究的基础。
  • 数据漂移:这指的是用来决策的数据和模型训练的数据存在很大差异。可想而知,这种情况下模型性能势必不佳。数据飘移包括如下几种,1)协变量漂移,指的是预测因素在两个数据集上分布差异很大;2)先验概率漂移,指的是两个数据集上结局发生率不同;3)概念漂移,指的是协变量和结局之间的关系随时间而变化。因此,要使构建的模型好,一定要解决数据漂移问题,这也是为什么研究论文中,需要开展训练集和测试集比较的原因所在(备注:期望结果是,训练集和测试集不存在差异)。
  • 缺乏外部验证:目前研究文献中所构建的预测模型,绝大多数仅做了内部验证,而缺乏有效的外部验证。原因很简单,数据比较难获取罢了。但是外部验证这个东西,也是一个相对宽泛的概念,其包括了同一个队列非同一时段的时间外部验证,也包括不同队列来源的验证。所以,在数据有限时,不妨试试时间外部验证。
  • 有限的泛化能力:泛化能力指的是模型在应用到新数据集时的表现。尽管现在很多文献,包括顶刊发表的模型,其报告的性能很高,但是泛化能力却不得而知。尤其是模型构建时,受限于研究数据,其仅代表了当时背景下的人群特征,一旦泛化到更一般人群时,其模型预测效果可能大打折扣。
  • 模型黑盒问题:当下算力越来越快,模型越来越复杂。在人工智能研究中,你可能很难找到类似线性回归、决策树这种易于理解的小而简的模型了。事实上正是如此,越来越多研究追求大而复杂的模型,旨在提高预测效果。但是,一个不可避免的问题就是,模型可解释性很差。关于如何解决该问题,也衍生出一门学问,即可解释性机器学习。

image.png

未来发展

机器学习作为人工智能领域的重要分支,在未来发展方面有许多潜力和趋势。

  • 深度学习的进一步发展:深度学习已经在图像识别、语音识别、自然语言处理等领域取得了巨大成功。未来,深度学习模型的架构和算法可能会进一步改进,以提高模型的性能和效率。

  • 迁移学习和增强学习的应用扩展:迁移学习和增强学习是机器学习中的重要技术,用于在不同任务和环境中进行知识迁移和决策优化。未来,这些技术可能会在更广泛的应用领域得到应用,例如自动驾驶、智能机器人等。

  • 解释性机器学习和可解释性人工智能:随着机器学习模型的复杂性增加,解释性机器学习和可解释性人工智能变得越来越重要。未来,研究人员可能会更加关注如何解释和理解机器学习模型的决策过程,以及如何提高模型的可解释性和可信度。

  • 自动化机器学习:自动化机器学习旨在简化机器学习的流程,使非专业人士也能够轻松应用机器学习技术。未来,自动化机器学习工具和平台可能会进一步发展,提供更智能、高效的模型选择、特征工程和超参数调优等功能。

  • 联邦学习和隐私保护:联邦学习是一种分布式学习方法,可以在保护数据隐私的同时进行模型训练与更新。随着对数据隐私的关注增加,联邦学习和隐私保护技术可能会在未来得到更广泛的应用。

  • 结合领域知识的机器学习:结合领域知识和机器学习技术可以提高模型的性能和鲁棒性。未来,研究人员可能会更加关注如何将领域知识融入到机器学习模型中,以提高模型的学习能力和泛化能力。

  • 可持续性和公平性的机器学习:可持续性和公平性是未来机器学习发展中的重要议题。研究人员和从业者可能会更加关注如何构建可持续和公平的机器学习模型,避免模型的偏见和歧视。

需要注意的是,以上只是一些可能的未来发展方向,随着科技的不断进步和应用需求的变化,机器学习的发展将是一个不断演化和创新的过程

参考资料

[1] Reference: Development and validation of predictive models for unplanned hospitalization in the Basque Country: analyzing the variability of non-deterministic algorithms

相关文章
|
2天前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
16 3
|
10天前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
14 1
|
19天前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
18天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
116 1
|
21天前
|
机器学习/深度学习 PHP 开发者
探索PHP中的面向对象编程构建你的首个机器学习模型:以Python和scikit-learn为例
【8月更文挑战第30天】在PHP的世界中,面向对象编程(OOP)是一块基石,它让代码更加模块化、易于管理和维护。本文将深入探讨PHP中面向对象的魔法,从类和对象的定义开始,到继承、多态性、封装等核心概念,再到实战中如何应用这些理念来构建更健壮的应用。我们将通过示例代码,一起见证PHP中OOP的魔力,并理解其背后的设计哲学。
|
20天前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
27 1
|
23天前
|
机器学习/深度学习
机器学习回归模型相关重要知识点总结
机器学习回归模型相关重要知识点总结
|
22天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
2天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
7 0