回归预测 | MATLAB实现GRU门控循环单元多输入多输出

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 回归预测 | MATLAB实现GRU门控循环单元多输入多输出

回归预测 | MATLAB实现GRU门控循环单元多输入多输出

预测效果

image.png
image.png
image.png

基本介绍

MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个特征,输出3个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上。命令窗口输出MAE和R2,可在下载区获取数据和程序内容。

程序设计

%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
layers = [ ...
    sequenceInputLayer(numFeatures)
   
    fullyConnectedLayer(numResponses)
    regressionLayer];
options = trainingOptions('adam', ...
    'MaxEpochs',250, ...
    'GradientThreshold',1, ...
    'InitialLearnRate',0.005, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.2, ...
    'ExecutionEnvironment','cpu', ...
    'Verbose',0, ...
    'Plots','training-progress');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   
net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测
MATLAB实现GRNN广义回归神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261
相关文章
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
22天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真
本项目运用鲸鱼优化算法(WOA)优化卷积神经网络(CNN)与GRU网络的超参数,以提升时间序列预测精度。在MATLAB 2022a环境下,通过CNN提取时间序列的局部特征,而GRU则记忆长期依赖。WOA确保模型参数最优配置。代码附有中文注释及操作视频,便于理解和应用。效果预览无水印,直观展示预测准确性。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
8月前
|
机器学习/深度学习 算法 数据挖掘
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了运用粒子群优化(PSO)调整深度学习模型超参数以提升时间序列预测性能的方法。在比较了优化前后的效果(Ttttttttttt12 vs Ttttttttttt34)后,阐述了使用matlab2022a软件的算法。文章详细讨论了CNN、GRU网络和注意力机制在时间序列预测中的作用,以及PSO如何优化这些模型的超参数。核心程序展示了PSO的迭代过程,通过限制和调整粒子的位置(x1)和速度(v1),寻找最佳解决方案(gbest1)。最终,结果保存在R2.mat文件中。
基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
|
6月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。