分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

分类效果

image.png

image.png

基本描述

1.SCNGO-CNN-LSTM-Attention数据分类预测程序,改进算法,融合正余弦和折射反向学习的北方苍鹰优化算法;
2.程序平台:无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;
3.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、卷积神经网络(CNN)和长短期记忆网络(LSTM)融合注意力机制的数据分类预测程序;
北方苍鹰优化算法(Northern Goshawk Optimization,NGO)由MOHAMMAD DEHGHANI等人于2022年提出,该算法,该算法模拟了北方苍鹰捕猎过程(猎物识别和攻击、追逐及逃生)。
改进策略参照麻雀优化算法,改进点如下:
①采用折射反向学习策略初始化北方苍鹰算法个体,基本思想是通过计算当前解的反向解来扩大搜索范围,借此找出给定问题更好的备选解;
②采用正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式;
③对正余弦策略的步长搜索因子进行改进;原始步长搜索因子呈线性递减趋势,不利于进一步平衡北方苍鹰算法的全局搜索和局部开发能力。
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;精确度、召回率、精确率、F1分数等评价指标。
4.通过SCNGO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以测试集精度最高为目标函数
4.绘制:损失、精度迭代变化极坐标图;测试对比散点图、混淆矩阵图;适应度曲线;展示:精确度、召回率、精确率、F1分数等评价指标。
5.适用领域:
适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)

% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);

curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update the leader
        if fitness<Best_Cost % Change this to > for maximization problem
            Best_Cost=fitness; % Update alpha
            Best_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(pop*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Best_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);
                
            end
            
        end
    end
    t=t+1;
    curve(t)=Best_Cost;
    [t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
11天前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
8天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
1月前
|
传感器 数据可视化
MATLAB - 读取双摆杆上的 IMU 数据
MATLAB - 读取双摆杆上的 IMU 数据
23 0
|
1月前
|
机器学习/深度学习 编解码 Android开发
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
37 0
|
3月前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。