视频编解码DTS和PTS

简介: DTS和PTS

DTS(Decoding Time Stamp):

即解码时间戳,这个时间戳的意义在于告诉播放器该在什么时候解码这一帧的数据。

PTS(Presentation Time Stamp):

即显示时间戳,这个时间戳用来告诉播放器该在什么时候显示这一帧的数据。


作用:为了解决编解码中视频解码和显示不同步的问题


H264压缩算法

1.分组:把几帧图像分为一组(GOP,也就是一个序列),为防止运动变化,帧数不宜取多。


2.定义帧:将每组内各帧图像定义为三种类型,即I帧、B帧和P帧;


3.预测帧:以I帧做为基础帧,以I帧预测P帧,再由I帧和P帧预测B帧;


4.数据传输:最后将I帧数据与预测的差值信息进行存储和传输。


帧内(Intraframe)压缩也称为空间压缩(Spatial compression)。当压缩一帧图像时,仅考虑本帧的数据而不考虑相邻帧之间的冗余信息,这实际上与静态图像压缩类似。帧内一般采用有损压缩算法,由于帧内压缩是编码一个完整的图像,所以可以独立的解码、显示。帧内压缩一般达不到很高的压缩,跟编码jpeg差不多。  

帧间(Interframe)压缩的原理是:相邻几帧的数据有很大的相关性,或者说前后两帧信息变化很小的特点。也即连续的视频其相邻帧之间具有冗余信息,根据这一特性,压缩相邻帧之间的冗余量就可以进一步提高压缩量,减小压缩比。帧间压缩也称为时间压缩(Temporal compression),它通过比较时间轴上不同帧之间的数据进行压缩。帧间压缩一般是无损的。帧差值(Frame differencing)算法是一种典型的时间压缩法,它通过比较本帧与相邻帧之间的差异,仅记录本帧与其相邻帧的差值,这样可以大大减少数据量。

顺便说下有损(Lossy )压缩和无损(Lossy less)压缩。无损压缩也即压缩前和解压缩后的数据完全一致。多数的无损压缩都采用RLE行程编码算法。有损压缩意味着解压缩后的数据与压缩前的数据不一致。在压缩的过程中要丢失一些人眼和人耳所不敏感的图像或音频信息,而且丢失的信息不可恢复。几乎所有高压缩的算法都采用有损压缩,这样才能达到低数据率的目标。丢失的数据率与压缩比有关,压缩比越小,丢失的数据越多,解压缩后的效果一般越差。此外,某些有损压缩算法采用多次重复压缩的方式,这样还会引起额外的数据丢失。

相关文章
|
26天前
|
网络协议 Java Linux
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
本文介绍了PyAV库,它是FFmpeg的Python绑定,提供了底层库的全部功能和控制。文章详细讲解了PyAV的安装过程,包括在Windows、Linux和ARM平台上的安装步骤,以及安装中可能遇到的错误和解决方法。此外,还解释了时间戳的概念,包括RTP、NTP、PTS和DTS,并提供了Python代码示例,展示如何获取RTSP流中的各种时间戳。最后,文章还提供了一些附录,包括Python通过NTP同步获取时间的方法和使用PyAV访问网络视频流的技巧。
109 4
PyAV学习笔记(一):PyAV简介、安装、基础操作、python获取RTSP(海康)的各种时间戳(rtp、dts、pts)
|
6月前
|
存储 编解码 缓存
音视频基础: I帧 P帧 B帧 GOP DIR PTS DTS 帧率 码率的介绍
音视频基础: I帧 P帧 B帧 GOP DIR PTS DTS 帧率 码率的介绍
217 0
|
6月前
|
存储 编解码 算法
音视频学习之基础概念整理(rgb/yuv,pcm,采样频率,帧率,码率,i帧p帧b帧,dts/pts)
音视频学习之基础概念整理(rgb/yuv,pcm,采样频率,帧率,码率,i帧p帧b帧,dts/pts)
142 0
|
6月前
|
关系型数据库 MySQL 数据挖掘
阿里云 SelectDB 携手 DTS ,一键实现 TP 数据实时入仓
DTS 作为阿里云核心的数据交互引擎,以其高效的实时数据流处理能力和广泛的数据源兼容性,为用户构建了一个安全可靠、可扩展、高可用的数据架构桥梁。阿里云数据库 SelectDB 通过与 DTS 联合,为用户提供了简单、实时、极速且低成本的事务数据分析方案。用户可以通过 DTS 数据传输服务,一键将自建 MySQL / RDS MySQL / PolarDB for MySQL 数据库,迁移或同步至阿里云数据库 SelectDB 的实例中,帮助企业在短时间内完成数据迁移或同步,并即时获得深度洞察。
阿里云 SelectDB 携手 DTS ,一键实现 TP 数据实时入仓
|
6月前
|
SQL 分布式计算 监控
在数据传输服务(DTS)中,要查看每个小时源端产生了多少条数据
【2月更文挑战第32天】在数据传输服务(DTS)中,要查看每个小时源端产生了多少条数据
64 6
|
6月前
DTS数据传输延迟可能有多种原因
【1月更文挑战第16天】【1月更文挑战第79篇】DTS数据传输延迟可能有多种原因
278 2
|
3月前
|
NoSQL MongoDB 数据库
DTS 的惊天挑战:迁移海量 MongoDB 数据时,捍卫数据准确完整的生死之战!
【8月更文挑战第7天】在数字化时代,大数据量的MongoDB迁移至关重要。DTS(数据传输服务)通过全面的数据评估、可靠的传输机制(如事务保证一致性)、异常处理(如回滚或重试),以及迁移后的数据校验来确保数据准确无损。DTS还处理数据转换与映射,即使面对不同数据库结构也能保持数据完整性,为企业提供可靠的数据迁移解决方案。
62 2
|
5月前
|
SQL 分布式计算 DataWorks
MaxCompute产品使用问题之dts是否支持传输数据到mc主键表2.0
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
5月前
|
存储 数据采集 NoSQL
DTS在迁移大数据量的MongoDB数据库时如何保证数据的准确性和完整性?
【6月更文挑战第4天】DTS在迁移大数据量的MongoDB数据库时如何保证数据的准确性和完整性?
139 1