Python 基础(十七):装饰器

简介: Python装饰器

1 闭包

首先我们来了解下闭包,什么是闭包呢?看一下维基百科给出的解析:

闭包(英语:Closure),又称词法闭包(Lexical Closure)或函数闭包(function closures),是引用了自由变量的函数。这个被引用的自由变量将和这个函数一同存在,即使已经离开了创造它的环境也不例外。所以,有另一种说法认为闭包是由函数和与其相关的引用环境组合而成的实体。闭包在运行时可以有多个实例,不同的引用环境和相同的函数组合可以产生不同的实例。

看了上面的解释,你可能已经懂了,也可能还是有点懵B,不过都没关系,我们再以 Python 为例更通俗的解释一下:比如我们调用一个带有返回值的函数 x,此时函数 x 为我们返回一个函数 y,这个函数 y 就被称作闭包,这么一说是不是豁然开朗了,
需要注意一点就是闭包并不是 Python 特有的,很多语言都有闭包的概念。具体示例如下所示:

def x(id):
    def y(name):
        print ('id:', id, 'name:', name)
    return y

y = x('ityard')
y('程序之间')

通过上面的示例,我们会发现闭包与类有一些相似,比如:它们都能实现数据的封装、方法的复用等;此外,通过使用闭包可以避免使用全局变量,还能将函数与其所操作的数据关连起来。

2 装饰器

装饰器(decorator)也称装饰函数,是一种闭包的应用,其主要是用于某些函数需要拓展功能,但又不希望修改原函数,它就是语法糖,使用它可以简化代码、增强其可读性,当然装饰器不是必须要求被使用的,不使用也是可以的,Python 中装饰器通过 @ 符号来进行标识。

装饰器可以基于函数实现也可基于类实现,其使用方式基本是固定的,看一下基本步骤:

  • 定义装饰函数(类)

  • 定义业务函数

  • 在业务函数上添加 @装饰函数(类)名

接下来通过示例来作进一步了解。

基于函数

# 装饰函数
def funA(fun):
    def funB(*args, **kw):
        print('函数 ' + fun.__name__ + ' 开始执行')
        fun(*args, **kw)
        print('函数 ' + fun.__name__ + ' 执行完成')
    return funB

@funA
# 业务函数
def funC(name):
  print('Hello', name)

funC('Jhon')

装饰函数也是可以接受参数的,如下所示:

# 装饰函数
def funA(flag):
    def funB(fun):
        def funC(*args, **kw):
            if flag == True:
                print('==========')
            elif flag == False:
                print('----------')
            fun(*args, **kw)
        return funC
    return funB

@funA(False)
# 业务函数
def funD(name):
  print('Hello', name)

funD('Jhon')

Python 中还支持多个装饰器同时使用,比如装饰函数为:funA、funD,业务函数为:funH,使用方式如下所示:

@funA
@funD
def funH():
    ...

基于类

装饰器除了基于函数实现,还可以基于类实现,看下示例:

class Test(object):
    def __init__(self, func):
        print('函数名是 %s ' % func.__name__)
        self.__func = func
    def __call__(self, *args, **kwargs):
        self.__func()
@Test
def hello():
    print('Hello ...')

hello()

Python 装饰器的 @... 相当于将被装饰的函数(业务函数)作为参数传入装饰函数(类)。

相关文章
|
1月前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
1月前
|
测试技术 数据安全/隐私保护 开发者
探索Python中的装饰器:从基础到高级应用
装饰器在Python中是一个强大且令人兴奋的功能,它允许开发者在不修改原有函数代码的前提下增加额外的功能。本文将通过具体代码示例,带领读者从装饰器的基础概念入手,逐步深入到高级用法,如带参数的装饰器和装饰器嵌套等。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
47 6
|
3天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
72 61
Python装饰器实战:打造高效性能计时工具
|
3天前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
68 59
|
1月前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
37 5
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
49 11
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
44 7
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
60 6