目录
1. 树型结构
1.1 概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 有一个特殊的结点,称为根结点,根结点没有前驱结点
- 除根结点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti (1 <= i <=m) 又是一棵与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
- 树是递归定义的。
编辑
编辑
注意:树形结构中,子树之间不能有交集,否则就不是树形结构
1.2 概念
编辑
结点的度:一个结点含有子树的个数称为该结点的度; 如上图:A的度为6
树的度:一棵树中,所有结点度的最大值称为树的度; 如上图:树的度为6
叶子结点或终端结点:度为0的结点称为叶结点; 如上图:B、C、H、I...等节点为叶结点
双亲结点或父结点:若一个结点含有子结点,则这个结点称为其子结点的父结点; 如上图:A是B的父结点
孩子结点或子结点:一个结点含有的子树的根结点称为该结点的子结点; 如上图:B是A的孩子结点
根结点:一棵树中,没有双亲结点的结点;如上图:A
结点的层次:从根开始定义起,根为第1层,根的子结点为第2层,以此类推
树的高度或深度:树中结点的最大层次; 如上图:树的高度为4
树的以下概念只需了解,在看书时只要知道是什么意思即可:
非终端结点或分支结点:度不为0的结点; 如上图:D、E、F、G...等节点为分支结点
兄弟结点:具有相同父结点的结点互称为兄弟结点; 如上图:B、C是兄弟结点
堂兄弟结点:双亲在同一层的结点互为堂兄弟;如上图:H、I互为兄弟结点
结点的祖先:从根到该结点所经分支上的所有结点;如上图:A是所有结点的祖先
子孙:以某结点为根的子树中任一结点都称为该结点的子孙。如上图:所有结点都是A的子孙
森林:由m(m>=0)棵互不相交的树组成的集合称为森林
1.3 树的表示形式
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。
class Node { int value; // 树中存储的数据 Node firstChild; // 第一个孩子引用 Node nextBrother; // 下一个兄弟引用 }
编辑
1.4 树的应用
文件系统管理(目录和文件)
编辑
2. 二叉树
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
编辑
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
编辑
2.2 两种特殊的二叉树
1. 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是
,则它就是满二叉树。
2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
编辑
2.3 二叉树的性质
1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有(i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是(k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
- 若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
- 若2i+1<n,左孩子序号:2i+1,否则无左孩子
- 若2i+2<n,右孩子序号:2i+2,否则无右孩子
2.4 二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式,具体如下:
// 孩子表示法 class Node { int val; // 数据域 Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树 Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树 } // 孩子双亲表示法 class Node { int val; // 数据域 Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树 Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树 Node parent; // 当前节点的根节点 }
孩子双亲表示法后序在平衡树位置介绍,本文采用孩子表示法来构建二叉树。
2.5 二叉树的基本操作
2.5.1 前置说明
public class BinaryTree{ public static class BTNode{ BTNode left; BTNode right; int value; BTNode(int value){ this.value = value; } } private BTNode root; public void createBinaryTree(){ BTNode node1 = new BTNode(1); BTNode node1 = new BTNode(2); BTNode node1 = new BTNode(3); BTNode node1 = new BTNode(4); BTNode node1 = new BTNode(5); BTNode node1 = new BTNode(6); root = node1; node1.left = node2; node2.left = node3; node1.right = node4; node4.left = node5; node5.right = node6; } }
注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。
2.5.2 二叉树的遍历
1. 前中后序遍历
二叉树结构,最简单的方式就是遍历。所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进行其它运算之基础。
编辑
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
- LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
- LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
编辑
在前几篇文章中我已经写了二叉树的前中后序遍历,这里我就不在写了。
2. 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
2.5.3 二叉树的基本操作
/* 获取叶子节点的个数:遍历思路 */ public static int leafSize = 0; int getLeafNodeCount1(TreeNode root) { if (root == null){ return 0; } Deque<TreeNode> queue = new LinkedList<>(); queue.offer(root); while(!queue.isEmpty()){ TreeNode node = queue.poll(); if (node.left != null){ queue.offer(node.left); } if (node.right != null){ queue.offer(node.right); } if (node.left==null && node.right==null){ leafSize++; } } return leafSize; } /* 获取叶子节点的个数:子问题 */ int getLeafNodeCount2(TreeNode root) { if (root == null){ return 0; } if (root.right==null && root.left==null){ return 1; } return getLeafNodeCount2(root.left)+getLeafNodeCount2(root.right); } /* 获取第K层节点的个数 */ int getKLevelNodeCount(TreeNode root, int k) { if (root==null || k<=0){ return 0; } if (k == 1){ return 1; } return getKLevelNodeCount(root.left,k-1)+getKLevelNodeCount(root.right,k-1); } /* 获取二叉树的高度 时间复杂度:O(N) */ int getHeight(TreeNode root) { if (root == null){ return 0; } if (root.left==null && root.right==null){ return 1; } return 1+Math.max(getHeight(root.left),getHeight(root.right)); } // 检测值为value的元素是否存在 Boolean find(TreeNode root, char val) { if (root == null){ return false; } if (root.val == val){ return true; } return find(root.left,val)||find(root.right,val); } //层序遍历 void levelOrder(TreeNode root) { Deque<TreeNode> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()){ TreeNode node = queue.poll(); System.out.print(node.val + " "); if (node.left != null){ queue.offer(node.left); } if (node.right != null){ queue.offer(node.right); } } System.out.println(); } // 判断一棵树是不是完全二叉树 boolean isCompleteTree(TreeNode root) { Deque<TreeNode> queue = new LinkedList<>(); queue.offer(root); boolean isStep1 = true; while(!queue.isEmpty()){ TreeNode node = queue.poll(); if(isStep1){ if(node.left!=null && node.right!=null){ queue.offer(node.left); queue.offer(node.right); }else if(node.left != null){ queue.offer(node.left); isStep1 = false; }else if(node.right != null){ return false; }else{ isStep1 = false; } }else{ if(node.left!=null || node.right!=null){ return false; } } } return true; }