高并发服务优化篇:详解一次由读写锁引起的内存泄漏

简介: JVM相关的异常,一直是一线研发比较头疼的问题。因为对于业务代码,JVM的运行基本算是黑盒,当异常发生时,较难直观地看到和找到问题所在,这也是我们一直要研究其内部逻辑的原因。

JVM相关的异常,一直是一线研发比较头疼的问题。因为对于业务代码,JVM的运行基本算是黑盒,当异常发生时,较难直观地看到和找到问题所在,这也是我们一直要研究其内部逻辑的原因。

本篇就有一个近期线上JVM内存泄漏的例子,带大家强行分析一波~

Part1线上服务器报警了

某天,同事来找我帮忙,原来是某系统毫无征兆地来了一连串报警,一波机器的老年代内存占用率超过阈值~

1.1先看表现

老年代内存占用

可以看到,在7月中旬之前,内存占用还是比较正常的,每次GC都可以回收掉很大一部分的老年代对象。

而中旬之后,老年代内存一直缓慢增长而无法释放。很明显,应该是对象没法被正常回收导致。

内存泄漏了~

1.2怎么办呢

如果是刚上线的项目爆出了此类问题,因为影响面比较小,可以直接先回滚代码,止血为第一要务。

不过,这个项目明显已经上线N多天,中间还不知道上过多少需求,而且,既然流量近期有上涨导致问题出现,说明,已经对客开流量了。

回滚是不可能了,抓紧时间定位问题,上线修复吧。

Part2定位问题

一般的步骤:

  • 拿到dump文件
  • 用MAT等工具,找出内存占用过多的异常对象,以及引用关系
  • 分析异常对象关联代码的可能问题

不过,因为这次dump下来的文件十多G,太大的,MAT基本无能为力,只能打印出来人工分析了

2.1定位问题代码

jmap结果查看

很幸运,异常对象非常明显。Point对象和GeoDispLocal对象,居然多达好几百万实例数,那就先看下代码中这两个对象是怎么用的。

private static final CacheMap<String, List<GeoDispLocal>> NEAR_DISTRICT_CACHE = new CacheMap<String, List<GeoDispLocal>>(3600 * 1000, 1000);
private static final CacheMap<Integer, Point> LOCAL_POINT_CACHE = new CacheMap<Integer, Point>(3600 * 1000, 6000);

都是被存放在本次缓存CacheMap中(内存泄漏的一个常见原因,就是因为被静态集合持有,无法回收导致),而dump文件中的CacheMap.Entry也是非常高的。

CacheMap就是我们的第一优先怀疑对象了。先看下这个缓存类是怎么回事:

public class CacheMap<K, V> {
    private final long expireMs;
    private LRUMap<K, CacheMap.Entry<V>> valueMap;
    //其他略
}

内部依赖一个带LRU功能的map,怎么实现的呢:

public class LRUMap<K, V> extends LinkedHashMap<K, V> {
    private static final long serialVersionUID = 1L;
    private final int maxCapacity;
    // 这个map不会扩容
    private static final float LOAD_FACTOR = 0.99f;
    private final ReadWriteLock lock = new ReentrantReadWriteLock();
    public LRUMap(int maxCapacity) {
        super(maxCapacity, LOAD_FACTOR, true);
        this.maxCapacity = maxCapacity;
    }
    @Override
    protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
        return size() > maxCapacity;
    }
    @Override
    public V get(Object key) {
        try {
            lock.readLock().lock();
            return super.get(key);
        } finally {
            lock.readLock().unlock();
        }
    }
    @Override
    public V put(K key, V value) {
        try {
            lock.writeLock().lock();
            return super.put(key, value);
        } finally {
            lock.writeLock().unlock();
        }
    }
    //remove clear 略
}

内部是一个依赖LinkedHashMap实现的LRU缓存。看注释,目的是要构建一个限定容量、且不会进行扩容的MAP(百度了一波,和网上的实现一模一样~)。那么,实际情况真的和想象中的一样么?。

2.2LinkedHashMap实现的LRUMap好使么

我们来看容量和扩容相关的设置:为什么设计者认为该LRUMap不会进行扩容?

//**把容量和扩容相关的参数摘出来**
//用户期望的最大容量
private final int maxCapacity;
//加载系数
private static final float LOAD_FACTOR = 0.99f;
//构造函数中调用LinkedHashMap进行初始化
super(maxCapacity, LOAD_FACTOR, true);
@Override  //复写删除最久元素条件方法
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
   //当LinkedHashMap.size 比 我们限定容量大时,执行删除
   return size() > maxCapacity;
}

按我们的实际使用实例化一下:

  • maxCapacity=6000,是我们希望的最大元素容量。
  • load_factor=0.99 加载因子。
  • Map内部threshold=8192*0.99=8110,是那么下次扩容时的容量大小。(map中table容量的真实大小是离6000最近的2的N次幂,即8192)。

因为复写了LRU条件函数,当size>6000时会进行LRU替换。因此,理论上,size永远不会达到8110。

怎么解决并发下的读写冲突呢?

//读写锁
private final ReadWriteLock lock = new ReentrantReadWriteLock();
public V get(Object key) {
   try {
       lock.readLock().lock();
       return super.get(key);
   } finally {
       lock.readLock().unlock();
   }
}
public V put(K key, V value) {
   try {
      lock.writeLock().lock();
      return super.put(key, value);
   } finally {
      lock.writeLock().unlock();
   }
}

设计者为了解决并发下的读写冲突,给查询和修改方法加了锁,为了兼顾性能,使用了读写锁:在get的时候加读锁,在put/remove的时候加写锁。

看起来,整个设计很好地解决了LRUMap的固定容量和并发操作问题,那么事实是什么样的呢?

其实,这个问题很早就有人分析过了[1] ,是因为LinkedHashMap在get读操作的时候,会为了维护LRU从而进行元素修改,即将get到的元素转移到链表最后。这样,就导致了读写并发问题,但这个解释感觉朦朦胧胧,因此,我决定在其基础上对读写并发问题再讲细致一些。

2.3LinkedHashMap内存泄漏拆解

都加了读写锁为什么不好使呢?

这里我们还是需要先明确,读写锁的概念和适用场景:读写锁,允许多个线程共享读锁,适用于读多写少的情况。(前提是,读操作不会改变存储结构)

所以,问题就发生在get操作上,LinkedHashMap的get操作被重写,目的是为了实现LRU功能,在get之后,将当前节点移动到链表最后。

移动啊,同志们,这明显是一个写操作,所以,加读锁还有用么?

即允许多线程进入,又进行了修改,那还能起什么作用,能没有并发问题么?

下面,对照节点移动的代码,详细拆解一下多线程下的并发问题:

get之后的节点移动,将节点移动到最后

实际拆解分析如下,为什么在多线程的情况下,会出现内存泄漏:

时间片下多线程的get执行

我们看到,在线程1执行完前两句,让出了时间片,当线程2执行到p.after=null之后又出让了时间片,这样,本来a应该是后面的<2,B>节点,结果多线程下变成了null,最终,后面两个节点被踢出了链表,删除操作无法触达,造成内存泄漏。

验证的代码就不贴了,大家有兴趣可以自己试一下~

Part3总结

话说回来,既然定位到了问题,这个内存泄漏怎么修复呢?

可以把读写锁改成互斥锁。或者直接用分布式存储,能慢多少呢,是不是,既方便,简单,又免得为了节约机器内存自己构造LRUMap。

每一个八股文都不只是为了面试,而是每次线上问题排查的基石。千万别把八股文的作用定位错了。。。

本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。

相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
125_训练加速:FlashAttention集成 - 推导注意力优化的独特内存节省
2025年,大型语言模型的训练面临着前所未有的挑战。随着模型参数量和序列长度的不断增加,传统注意力机制的内存瓶颈问题日益突出。FlashAttention作为一种突破性的注意力算法,通过创新的内存访问模式和计算优化,显著提升了训练效率和内存利用。
|
2月前
|
存储 机器学习/深度学习 PyTorch
119_LLM训练的高效内存管理与优化技术:从ZeRO到Flash Attention
大型语言模型(LLM)的训练面临着前所未有的计算和内存挑战。随着模型规模达到数百亿甚至数千亿参数,高效的内存管理成为训练成功的关键因素之一。2025年,LLM训练的内存优化技术已经取得了显著进展,从ZeRO优化器到Flash Attention等创新技术,为训练超大规模模型提供了可能。
|
2月前
|
安全 Java 数据库连接
一把锁的两种承诺:synchronized如何同时保证互斥与内存可见性?
临界区指多线程中访问共享资源的代码段,需通过互斥机制防止数据不一致与竞态条件。Java用`synchronized`实现同步,保证同一时刻仅一个线程执行临界区代码,并借助happens-before规则确保内存可见性与操作顺序,从而保障线程安全。
170 11
|
5月前
|
缓存 固态存储 Windows
如何让内存发挥到最大效能?全面优化指南,提升电脑运行体验
电脑内存使用不合理会导致卡顿,本文教你如何优化内存性能。检查内存容量与主板支持上限,考虑升级或调整配置;关闭后台程序、管理浏览器标签、结束异常进程以释放内存;设置虚拟内存、调整视觉效果、定期重启提升效率;必要时增加内存条、选择高频内存、更换固态硬盘。避免盲目清理内存和依赖大内存忽视其他硬件瓶颈。只需合理设置,无需额外花钱,就能显著提升电脑速度。
|
3月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
|
4月前
|
运维 监控 Kubernetes
高并发来了,运维别慌:如何优化运维流程,才能稳住阵脚?
高并发来了,运维别慌:如何优化运维流程,才能稳住阵脚?
152 4
|
3月前
|
数据采集 网络协议 API
协程+连接池:高并发Python爬虫的底层优化逻辑
协程+连接池:高并发Python爬虫的底层优化逻辑
|
8月前
|
缓存 并行计算 PyTorch
PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
本文深入探讨了PyTorch中GPU内存管理的核心机制,特别是CUDA缓存分配器的作用与优化策略。文章分析了常见的“CUDA out of memory”问题及其成因,并通过实际案例(如Llama 1B模型训练)展示了内存分配模式。PyTorch的缓存分配器通过内存池化、延迟释放和碎片化优化等技术,显著提升了内存使用效率,减少了系统调用开销。此外,文章还介绍了高级优化方法,包括混合精度训练、梯度检查点技术及自定义内存分配器配置。这些策略有助于开发者在有限硬件资源下实现更高性能的深度学习模型训练与推理。
1638 0
|
5月前
|
存储 人工智能 自然语言处理
AI代理内存消耗过大?9种优化策略对比分析
在AI代理系统中,多代理协作虽能提升整体准确性,但真正决定性能的关键因素之一是**内存管理**。随着对话深度和长度的增加,内存消耗呈指数级增长,主要源于历史上下文、工具调用记录、数据库查询结果等组件的持续积累。本文深入探讨了从基础到高级的九种内存优化技术,涵盖顺序存储、滑动窗口、摘要型内存、基于检索的系统、内存增强变换器、分层优化、图形化记忆网络、压缩整合策略以及类操作系统内存管理。通过统一框架下的代码实现与性能评估,分析了每种技术的适用场景与局限性,为构建高效、可扩展的AI代理系统提供了系统性的优化路径和技术参考。
302 4
AI代理内存消耗过大?9种优化策略对比分析
|
5月前
|
存储 人工智能 API
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
604 0
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南

热门文章

最新文章