Flink之输出算子 (Sink)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: Flink之输出算子 (Sink)

Flink 作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。我们已经了解了 Flink 程序如何对数据进行读取、转换等操作,最后一步当然就应该将结果数据保存或输出到外部系统了。

连接到外部系统

在 Flink 中,如果我们希望将数据写入外部系统,其实并不是一件难事。我们知道所有算子都可以通过实现函数类来自定义处理逻辑,所以只要有读写客户端,与外部系统的交互在任何一个处理算子中都可以实现。例如在 MapFunction 中,我们完全可以构建一个到 Redis 的连接,然后将当前处理的结果保存到 Redis 中。如果考虑到只需建立一次连接,我们也可以利用RichMapFunction,在 open() 生命周期中做连接操作。


这样看起来很方便,却会带来很多问题。Flink 作为一个快速的分布式实时流处理系统,对稳定性和容错性要求极高。一旦出现故障,我们应该有能力恢复之前的状态,保障处理结果的正确性。这种性质一般被称作“状态一致性”。Flink 内部提供了一致性检查点(checkpoint)来保障我们可以回滚到正确的状态;但如果我们在处理过程中任意读写外部系统,发生故障后就很难回退到从前了。


为了避免这样的问题,Flink 的 DataStream API 专门提供了向外部写入数据的方法:addSink。与 addSource 类似,addSink 方法对应着一个“Sink”算子,主要就是用来实现与外部系统连接、并将数据提交写入的;Flink 程序中所有对外的输出操作,一般都是利用 Sink 算 子完成的。


Sink 一词有“下沉”的意思,有些资料会相对于“数据源”把它翻译为“数据汇”。不论怎样理解,Sink 在 Flink 中代表了将结果数据收集起来、输出到外部的意思,所以我们这里统一把它直观地叫作“输出算子”。


之前我们一直在使用的 print 方法其实就是一种 Sink,它表示将数据流写入标准控制台打印输出。查看源码可以发现,print 方法返回的就是一个 DataStreamSink。

@PublicEvolving
    public DataStreamSink<T> print(String sinkIdentifier) {
        PrintSinkFunction<T> printFunction = new PrintSinkFunction(sinkIdentifier, false);
        return this.addSink(printFunction).name("Print to Std. Out");
    }

与 Source 算子非常类似,除去一些 Flink 预实现的 Sink,一般情况下 Sink 算子的创建是通过调用 DataStream 的.addSink()方法实现的。

stream.addSink(new SinkFunction(…));

addSource 的参数需要实现一个 SourceFunction 接口;类似地,addSink 方法同样需要传入一个参数,实现的是 SinkFunction 接口。在这个接口中只需要重写一个方法 invoke(),用来将指定的值写入到外部系统中。这个方法在每条数据记录到来时都会调用:


当然,SinkFuntion 多数情况下同样并不需要我们自己实现。Flink 官方提供了一部分的框架的 Sink 连接器。d6e4e340ad3541e58920a03091cb6554.png


我们可以看到,像 Kafka 之类流式系统,Flink 提供了完美对接,source/sink 两端都能连接,可读可写;而对于 Elasticsearch、文件系统(FileSystem)、JDBC 等数据存储系统,则只提供了输出写入的 sink 连接器。


除 Flink 官方之外,Apache Bahir 作为给 Spark 和 Flink 提供扩展支持的项目,也实现了一些其他第三方系统与 Flink 的连接器。

069d406105e6460c86f4040df9118c3b.png

除此以外,就需要用户自定义实现 sink 连接器了。

输出到kafka

Kafka 是一个分布式的基于发布/订阅的消息系统,本身处理的也是流式数据,所以跟Flink“天生一对”,经常会作为 Flink 的输入数据源和输出系统。Flink 官方为 Kafka 提供了 Source和 Sink 的连接器,我们可以用它方便地从 Kafka 读写数据。如果仅仅是支持读写,那还说明不了 Kafka 和 Flink 关系的亲密;真正让它们密不可分的是,Flink 与 Kafka 的连接器提供了端到端的精确一次(exactly once)语义保证,这在实际项目中是最高级别的一致性保证。


如果没有安装kafka请移步:https://blog.csdn.net/weixin_47491957/article/details/124319297

代码运行的前提,kafka创建了test topic,并且开启消费者,进行监听,命令可以查看上方链接。

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import java.util.Properties;
public class SinkToKafkaTest {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        Properties properties = new Properties();
        properties.put("bootstrap.servers", "master:9092");
        DataStream<String> stream = env.socketTextStream("localhost", 7777);
        stream.addSink(new FlinkKafkaProducer<String>(
                "test",
                new SimpleStringSchema(),
                properties
        ));
        env.execute();
    }
}

这里我们可以看到,addSink 传入的参数是一个 FlinkKafkaProducer。这也很好理解,因为需要向 Kafka 写入数据,自然应该创建一个生产者。FlinkKafkaProducer 继承了抽象类TwoPhaseCommitSinkFunction,这是一个实现了“两阶段提交”的 RichSinkFunction。两阶段提

交提供了 Flink 向 Kafka 写入数据的事务性保证,能够真正做到精确一次(exactly once)的状态一致性。


自定义输出

如果我们想将数据存储到我们自己的存储设备中,而 Flink 并没有提供可以直接使用的连接器,又该怎么办呢?


与 Source 类似,Flink 为我们提供了通用的 SinkFunction 接口和对应的 RichSinkDunction抽象类,只要实现它,通过简单地调用DataStream 的.addSink()方法就可以自定义写入任何外部存储。之前与外部系统的连接,其实都是连接器帮我们实现了 SinkFunction,现在既然没有现成的,我们就只好自力更生了。


本身flink有jdbc连接器,这里我以如何用mybatis进行输出作为例子。


首先导入依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.22</version>
</dependency>
<dependency>
    <groupId>org.mybatis</groupId>
    <artifactId>mybatis</artifactId>
    <version>3.5.9</version>
</dependency>

配置文件

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
        PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
        "http://mybatis.org/dtd/mybatis-3-config.dtd">
<configuration>
    <settings>
        <!--
        是否开启驼峰命名自动映射,
        即从经典数据库列名 A_COLUMN 映射到经典 Java 属性名 aColumn。
        -->
        <setting name="mapUnderscoreToCamelCase" value="true"/>
    </settings>
    <!--设置别名,方便调用-->
    <typeAliases>
        <package name="com.test.stream.entity"/>
    </typeAliases>
    <!--配置环境,可以设置多个环境,然后在default里面去切换就可以了-->
    <environments default="development">
        <environment id="development">
            <transactionManager type="JDBC"/>
            <dataSource type="POOLED">
                <property name="driver" value="com.mysql.cj.jdbc.Driver"/>
                <property name="url" value="jdbc:mysql://master:3306/event?useUnicode=true&amp;characterEncoding=utf8&amp;allowMultiQueries=true&amp;serverTimezon=Asia/Shanghai"/>
                <property name="username" value="root"/>
                <property name="password" value="123456"/>
            </dataSource>
        </environment>
    </environments>
    <!--每一个mapper.xml需要有一个对应的mapper-->
    <mappers>
        <mapper resource="com/tset/stream/mapper/BsEventLevelMapper.xml"/>
    </mappers>
</configuration>

获取SqlSession的工具类

import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibatis.session.SqlSessionFactory;
import org.apache.ibatis.session.SqlSessionFactoryBuilder;
import java.io.IOException;
import java.io.InputStream;
public class MybatisUtil {
    private static SqlSessionFactory sqlSessionFactory;
    static {
        try {
          /*
          由于文件是存放在resources路径下的,
          所以此处默认是指向resources下的文件,
          故只写对应的文件名就能读取到指定的文件了
          */
            String resource = "mybatis-config.xml";
            InputStream inputStream = Resources.getResourceAsStream(resource);
            sqlSessionFactory = new SqlSessionFactoryBuilder().build(inputStream);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    public static SqlSession getSqlSession() {
        //设置为true是为了进行增删改的时候可以自动提交事务
        return sqlSessionFactory.openSession(true);
    }
}

这里创建类继承RichSinkFunction类(泛型就是要处理的数据类型)

重写三个方法:open、close、invoke

open和close:都是该sink初始化和销毁的时候执行,一般用作开启会话和结束会话。

invoke:真正执行的地方

import com.cstor.stream.entity.BsEvent;
import com.cstor.stream.mapper.BsEventMapper;
import com.cstor.stream.util.MybatisUtil;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.ibatis.session.SqlSession;
public class MysqlSink extends RichSinkFunction<BsEvent> {
    SqlSession sqlSession;
    BsEventMapper bsEventMapper;
    @Override
    public void open(Configuration parameters) throws Exception {
        sqlSession = MybatisUtil.getSqlSession();
        bsEventMapper = sqlSession.getMapper(BsEventMapper.class);
    }
    @Override
    public void close() throws Exception {
        sqlSession.close();
    }
    @Override
    public void invoke(BsEvent value, Context context) throws Exception {
        //对应处理逻辑
    }
}

最终在写出的时候,添加sink即可

formatEvents.addSink(new MysqlSink());

尚硅谷yyds

学习资料来自于尚硅谷:https://www.bilibili.com/video/BV133411s7Sa?p=1

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
175 0
|
2月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
178 0
|
4月前
|
SQL 关系型数据库 测试技术
实时数仓 Hologres操作报错合集之执行Flink的sink操作时出现报错,是什么原因
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
4月前
|
存储 SQL Java
实时数仓 Hologres产品使用合集之如何使用Flink的sink连接
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
5月前
|
消息中间件 NoSQL Redis
实时计算 Flink版产品使用问题之配置了最大连续失败数不为1,在Kafka的精准一次sink中,如果ck失败了,这批数据是否会丢失
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在Flink算子内部使用异步IO可以通过什么办法实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
NoSQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何确保多并发sink同时更新Redis值时,数据能按事件时间有序地更新并且保持一致性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
消息中间件 SQL 数据处理
实时计算 Flink版产品使用问题之sink多个并行度写入rabbit mq会导致顺序性问题吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何将算子链断开
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL NoSQL 关系型数据库
实时计算 Flink版产品使用问题之需要在sink端配置Doris集群,该如何编写
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

热门文章

最新文章