清华发布SmartMoE:一键实现高性能MoE稀疏大模型分布式训练

简介: 清华发布SmartMoE:一键实现高性能MoE稀疏大模型分布式训练


PACMAN 实验室探索大模型分布式训练系统再出新成果。

2023 年 7 月,清华大学计算机系 PACMAN 实验室发布稀疏大模型训练系统 SmartMoE,支持用户一键实现 MoE 模型分布式训练,通过自动搜索复杂并行策略,达到开源 MoE 训练系统领先性能。同时,PACMAN 实验室在国际顶级系统会议 USENIX ATC’23 发表长文,作者包括博士生翟明书、何家傲等,通讯作者为翟季冬教授。PACMAN 实验室在机器学习系统领域持续深入研究,SmartMoE 是继 FastMoE, FasterMoE 和 “八卦炉” 后在大模型分布式训练系统上的又一次探索。欲了解更多相关成果可查看翟季冬教授首页:https://pacman.cs.tsinghua.edu.cn/~zjd
Mixture-of-Experts (MoE) 是一种模型稀疏化技术,因其高效扩展大模型参数量的特性而备受研究者关注。为了提高 MoE 模型的易用性、优化 MoE 模型训练性能,PACMAN 实验室在 MoE 大模型训练系统上进行了系统深入的研究。2021 年初,开源发布了 FastMoE 系统,它是第一个基于 PyTorch 的 MoE 分布式训练系统开源实现,在业界产生了较大的影响力。进一步,为了解决专家并行的稀疏、动态计算模式带来的严重性能问题,FasterMoE 系统地分析、优化了专家并行策略。FasterMoE 中设计的「影子专家」技术显著缓解了负载不均问题、通信 - 计算协同调度算法有效隐藏了 all-to-all 通信的高延迟。FasterMoE 成果发表在 PPoPP’22 国际会议。



MoE 模型遇到的难题
不同于稠密模型直接通过增大模型尺寸实现扩展,如图一所示,MoE 技术通过将一个小模型转变为多个稀疏激活的小模型实现参数扩展。由于各个专家在训练时稀疏激活,MoE 模型得以在不增加每轮迭代计算量的前提下增加模型参数量;从而有望在相同训练时间内获得更强的模型能力。
图一:通过 MoE 技术扩展模型规模

为了实现 MoE 大模型的分布式训练,业界提出了专家并行(Expert Parallelism)技术。如图二所示,各个专家被分布式地存储在不同节点上,在训练过程中通过 all-to-all 通信将训练数据发送至对应专家所在节点。专家并行相较于数据并行(Data Parallelism)有更小的内存开销,因为专家参数无冗余存储。可以认为专家并行是一种针对 MoE 结构的模型并行(Model Parallelism)。
图二:专家并行示意图

然而,使用朴素的专家并行技术训练 MoE 模型有严重的性能问题,其根因是 MoE 模型的稀疏激活模式。它会导致节点间产生大量不规则 all-to-all 通信增加延迟、计算量负载不均造成硬件利用率低。如图三所示的真实模型训练过程中的专家选择分布,可以观察到专家间显著的负载不均现象,且分布随训练进行动态变化。
图三:真实训练中的专家选择分布

随着学界对各并行策略的深入研究,使用各并行策略的复杂组合(称为混合并行)进行大模型训练成为必要模式。混合并行的策略调优过程十分复杂,为了提高可用性,学界提出了自动并行算法自动搜索、调优混合并行策略。然而,现有混合并行、自动并行系统无法高效处理 MoE 大模型,他们缺少对 MoE 模型训练稀疏激活、计算负载不均且动态变化的特征的针对性设计。

SmartMoE 带来解决方案
为了实现 MoE 模型的高效训练,SmartMoE 系统对 MoE 模型的分布式训练策略进行了全面的支持。对于常用的四种并行策略(数据并行、流水线并行、模型并行和专家并行),SmartMoE 系统做出了全面的支持,允许用户对它们任意组合;在论文投稿时(2023 年 1 月),尚未有其他系统能做到这一点(如图四所示)。
为了处理 MoE 的动态计算负载,SmartMoE 独特设计了专家放置(Expert Placement)策略,在经典并行策略组合的基础上,实现了动态负载均衡。如图五所示,MoE 模型不同的计算负载(workload)会造成不同专家的过载;使用不同的专家放置顺序,能在特定负载下实现节点间负载均衡。
图四:开源分布式系统对各并行策略的支持情况对比
图五:不同 MoE 训练负载需要不同专家放置策略
为了提高 MoE 模型复杂混合并行策略的易用性,SmartMoE 设计了一套轻量级且有效的两阶段自动并行算法。现有自动并行系统只能在训练开始前进行策略搜索,无法根据负载情况动态调整策略。简单的将现有自动并行搜索算法在训练过程中周期性使用亦不可行,因为训练过程中的并行策略搜索和调整对延迟要求很高,现有算法的开销过大。
SmartMoE 独创性地将自动并行搜索过程分为两阶段:

  • 训练开始前,使用经典算法搜索,获得一个较小的候选策略集合
  • 训练过程中,根据当前负载,在候选策略集合中动态调整,由于候选策略集合大小有限,此过程的开销可以得到控制。


最终,SmartMoE 实现了轻量级且有效的自动并行,达到了业界领先的性能。
在性能测试中,SmartMoE 在不同模型结构、集群环境和规模下均有优异的表现。例如,在 GPT-MoE 模型的训练性能测试中,相较于 FasterMoE,SmartMoE 有最高 1.88x 的加速比。值得注意的,在对每一轮迭代的性能观察中发现,动态的并行策略调整是必要的,且需要使用合适的调整频率,如图六所示。更多实验细节请参考论文原文。
图六:MoE 模型在不同迭代的运行时间。”dyn.X” 表示每 X 轮进行一次策略调整。
图七:SmartMoE 在 GPT-MoE 模型端到端训练中的性能提升
结语
SmartMoE 现已开源,开发者维护活跃,且仍在持续优化迭代,助力 MoE 大模型的发展。这是 PACMAN 实验室继 FastMoE,[PPoPP’22] FasterMoE,[PPoPP’22] BaGuaLu 后在大模型分布式训练系统上的又一次探索。

相关文章
|
2月前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
559 4
|
3月前
|
传感器 算法 安全
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
基于分布式模型预测控制DMPC的单向拓扑结构下异构车辆车队研究(Matlab代码实现)
132 4
|
4月前
|
负载均衡 并行计算 异构计算
大模型训练推理优化(5): FlexLink —— NVLink 带宽无损提升27%
本期我们将介绍蚂蚁集团ASystem团队在大模型通信优化上的新工作FlexLink,旨在通过动态聚合多路通信(NVLink,PCIe,RDMA),在H800等典型硬件上将典型通信算子如(AllReduce, All Gather)吞吐提升最高达27%,尤其适合大模型长序列推理(Prefill阶段),及训练等通信密集的带宽bound场景。方案对精度无影响。
|
4月前
|
机器学习/深度学习 人工智能 算法
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破
1225 0
GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题
|
3月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
465 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
|
2月前
|
存储 监控 算法
117_LLM训练的高效分布式策略:从数据并行到ZeRO优化
在2025年,大型语言模型(LLM)的规模已经达到了数千亿甚至数万亿参数,训练这样的庞然大物需要先进的分布式训练技术支持。本文将深入探讨LLM训练中的高效分布式策略,从基础的数据并行到最先进的ZeRO优化技术,为读者提供全面且实用的技术指南。
|
3月前
|
机器学习/深度学习 算法
Proximal SFT:用PPO强化学习机制优化SFT,让大模型训练更稳定
本文介绍了一种改进的监督微调方法——Proximal Supervised Fine-Tuning (PSFT),旨在解决传统SFT易过拟合、泛化能力差及导致“熵坍塌”的问题。受PPO强化学习算法启发,PSFT通过引入参数更新的稳定性机制,防止模型在训练中变得过于确定,从而提升探索能力与后续强化学习阶段的表现。实验表明,PSFT在数学推理、模型对齐及泛化能力方面均优于传统SFT。
364 3
Proximal SFT:用PPO强化学习机制优化SFT,让大模型训练更稳定
|
3月前
|
算法 调度
【孤岛划分】分布式能源接入弹性配电网模型研究【IEEE33节点】(Matlab代码实现)
【孤岛划分】分布式能源接入弹性配电网模型研究【IEEE33节点】(Matlab代码实现)
442 10
|
3月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,