【Linux系统:进程控制】(一)

简介: 【Linux系统:进程控制】(一)

1 进程创建

1.1 fork函数

在linux中fork函数是非常重要的函数,它从已存在进程中创建一个新进程。新进程为子进程,而原进程为父进程。这个我们在之前已经讲过了,这里就不再多说了。

需要补充一下的是:

进程调用fork,当控制转移到内核中的fork代码后,内核做:

分配新的内存块和内核数据结构给子进程

将父进程部分数据结构内容拷贝至子进程

添加子进程到系统进程列表当中

fork返回,开始调度器调度

当一个进程调用 fork之后,就有两个二进制代码相同的进程。而且它们都运行到相同的地方。但每个进程都将可以开始它们自己的旅程。 fork 之前父进程独立执行, fork 之后,父子两个执行流分别执行。注意, fork 之后,谁先执行完全由调度器 决定。

1.2 写时拷贝

这个我们在进程地址空间那里做了很详细的讲解,这里就不再多说了。

1.3 fork常规用法

  • 一个父进程希望复制自己,使父子进程同时执行不同的代码段。例如,父进程等待客户端请求,生成子进程来处理请求。
  • 一个进程要执行一个不同的程序。例如子进程从fork返回后,调用exec函数。

1.4 fork调用失败的原因

  • 系统中有太多的进程
  • 实际用户的进程数超过了限制

2 进程终止

2.1 进程退出场景

  • 代码运行完毕,结果正确
  • 代码运行完毕,结果不正确
  • 代码异常终止

第一种与第二种是程序已经正常执行完毕,是通过退出码拿到结果。而第二种是代码已经崩溃了需要接受操作系统发送的信号。(这个我们后面讲信号时会详细讲解)

2.2 进程常见退出方法

正常终止(可以通过 echo $? 查看进程退出码):

  •  main返回
  •  调用exit
  • _exit

异常退出:

  • ctrl + c,信号终止

我们可以来试试echo $?的基本用法:

[grm@VM-8-12-centos lesson9]$ ls -la
total 28
drwxrwxr-x  2 grm grm 4096 Mar  8 23:01 .
drwx------ 18 grm grm 4096 Mar  8 22:57 ..
-rw-rw-r--  1 grm grm   64 Mar  8 22:59 Makefile
-rwxrwxr-x  1 grm grm 8304 Mar  8 23:01 mytest
-rw-rw-r--  1 grm grm   66 Mar  8 23:01 test.c
[grm@VM-8-12-centos lesson9]$ echo $?
0
[grm@VM-8-12-centos lesson9]$ ls -lz
ls: invalid option -- 'z'
Try 'ls --help' for more information.
[grm@VM-8-12-centos lesson9]$ echo $?
2

我们发现当我们使用正确的ls指令时,用echo $?返回的退出码是0,而输出错误的指令得到的退出码是2。

我们创建一个test.c:

  1 #include<stdio.h>
  2 #include<unistd.h>
  3 
  4 int main()
  5 {
  6 
  7   return 2;                                                                                                                            
  8 }

当我们这样运行时:

[grm@VM-8-12-centos lesson9]$ vim test.c
[grm@VM-8-12-centos lesson9]$ make
gcc -o mytest test.c
[grm@VM-8-12-centos lesson9]$ ./mytest
[grm@VM-8-12-centos lesson9]$ echo $?
2
[grm@VM-8-12-centos lesson9]$ echo $?
0

我们运行时第一次用$?得到的退出码与我们预估计的一样,但是当我们再次echo $?时却已经不是我们想要的结果了,这是因为$?只会保留最近的一次退出码。

当我们想要结束进程外除了用return我们还可以用exit来结束进程。但是除了exit,还提供了_exit函数,他们有什么区别吗?我们可以用代码来试试。

当我们使用exit时:

  1 #include<stdio.h>
  2 #include<stdlib.h>                                                                                                                      
  3 #include<unistd.h>
  4 
  5 int main()
  6 {
  7   printf("hello exit");
  8   exit(1);
  9   return 0;
 10 }

运行结果:

93f8c2d39e1f4d09b348ef6f39ea8590.png

当我们使用_exit时:

  1 #include<stdio.h>
  2 #include<stdlib.h>                                                                                                                      
  3 #include<unistd.h>
  4 
  5 int main()
  6 {
  7   printf("hello exit");
  8   _exit(1);
  9   return 0;
 10 }

运行结果:

e4a540b9e867412387223fb387658de5.png

我们发现_exit是不会刷新行缓冲区的,但是exit是会的。

exit 最后也会调用 _exit, 但在调用 _exit 之前,还做了其他工作:

1. 执行用户通过 exit 或 _exit 定义的清理函数。

2. 关闭所有打开的流,所有的缓存数据均被写入

3. 调用 _exit

4cc90ab583fb4f77afafc9ce8a736c08.png

3 进程等待

3.1 进程等待必要性

之前讲过,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内存泄漏。进程一旦变成僵尸状态,那就刀枪不入,“杀人不眨眼”的kill -9 也无能为力,因为谁也没有办法杀死一个已经死去的进程。

父进程派给子进程的任务完成的如何,我们需要知道。如子进程运行完成,结果对还是不对,或者是否正常退出。

父进程通过进程等待的方式,回收子进程资源,获取子进程退出信息。

3.2 进程等待的方法

3.2.1 wait方法

#include<sys/types.h>

#include<sys/wait.h>

pid_t wait(int*status);

返回值:

成功返回被等待进程pid,失败返回-1。

参数:

输出型参数,获取子进程退出状态,不关心则可以设置成为NULL。

这个方法很简单,我就不试试了,重点是下面的waitpid这个方法。

3.2.2 waitpid方法

pid_ t waitpid(pid_t pid, int *status, int options);

返回值:

当正常返回的时候waitpid返回收集到的子进程的进程ID;

如果设置了选项WNOHANG,而调用中waitpid发现没有已退出的子进程可收集,则返回0;

如果调用中出错,则返回-1,这时errno会被设置成相应的值以指示错误所在;

参数:

pid :

Pid=-1,等待任一个子进程。与wait等效。

Pid>0.等待其进程ID与pid相等的子进程。

status:

WIFEXITED(status): 若为正常终止子进程返回的状态,则为真。(查看进程是否是正常退出)

WEXITSTATUS(status): 若WIFEXITED非零,提取子进程退出码。(查看进程的退出码)

options:

WNOHANG: 若pid指定的子进程没有结束,则waitpid()函数返回0,不予以等待。若正常结束,则返回该子进程的ID 。

我们来看看是怎么用的:

  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<unistd.h>
  4 #include<sys/types.h>
  5 #include<sys/wait.h>
  6 int main()
  7 {
  8   pid_t id=fork();
  9   if(id==0)
 10   {
 11     //child
 12     int cnt=5;
 13     while(cnt--)
 14     {
 15       printf("我是一个子进程,我的pid:%d ,ppid:%d \n",getpid(),getppid());
 16       sleep(1);
 17     }
 18     exit(0);
 19   }
 20   //parent
 21   int status=0;                                                                                                                                            
 22   int ret_pid=waitpid(id,&status,0);
 23   printf("我是一个父进程,我的pid:%d\n",getpid());
 24   if(ret_pid<0)
 25   {
 26     printf("wait error\n");
 27   }
 28   else if(ret_pid>0)
 29   {
 30     printf("wait success\n");
 31   }
 32   return 0;
 33 }
~
~

我们来看看运行结果:

ffa8c0381a4441d7bc3ea8c53b5c47a2.png

那父进程想要拿到子进程的状态应该怎么办呢?我们可以用status来获得。

当然用宏也能够得到,并且更加容易理解。下面我们这里用宏来获得:

  1 #include<stdio.h>
  2 #include<stdlib.h>
  3 #include<unistd.h>
  4 #include<sys/types.h>
  5 #include<sys/wait.h>
  6 int main()
  7 {
  8   pid_t id=fork();
  9   if(id==0)
 10   {
 11     //child
 12     int cnt=10;
 13     while(cnt)
 14     {
 15       printf("我是一个子进程,我还活着呢,cnt:%d,我的pid:%d ,ppid:%d \n",cnt--,getpid(),getppid());
 16       sleep(1);
 17     }
 18     exit(0);
 19   }
 20   //parent
 21   while(1)
 22   {
 23     int status=0;
 24     int ret_pid=waitpid(id,&status,WNOHANG);
 25     //bootprintf("我是一个父进程,我的pid:%d\n",getpid());
 26     if(ret_pid<0)                                                                                                                                          
 27     {
 28       printf("wait error\n");
 29       exit(1);
 30     }
 31     else if(ret_pid>0)
 32     {
 33       //printf("wait success\n");
 34       if(WIFEXITED(status))
 35       {
 36         printf("wait success 退出码为:%d\n",WEXITSTATUS(status));
 37      }
 38       else
 39       {
 40         printf("wait success 退出信号为:%d\n",status&0x7f);
 41       }
 42       break;
 43     }
 44     else 
 45     {
 46       printf("我是一个父进程,我再做其他的事情\n");
 47       sleep(1);
 48       continue;
 49     }
 50   } 
 51   return 0;
 52 }

当我们运行时:

b678fd5b8f9742b38825d8ef829f789c.png

假如我们想让父进程收到信号呢?我们可以用kill -9命令来杀掉子进程。

fcde0da8f28d4b8995be7d14d3950a97.png

这样我们就得到了退出信号。

大家这时或许会疑问:这个WNOHANG又是什么鬼呢?

我们之前设置的默认参数为0,表示一种阻塞等待,就是父进程在等待子进程结束时不会去做其他的事情,而是专心等待,这里把参数设置成了WNOHANG就是不让其阻塞等待,而在等待子进程死亡时做一些其他的事情。平时我们说卡住了也喜欢说成HANG住了。

  • 如果子进程已经退出,调用wait/waitpid时,wait/waitpid会立即返回,并且释放资源,获得子进程退出信息。
  • 如果在任意时刻调用wait/waitpid,子进程存在且正常运行,则进程可能阻塞。
  • 如果不存在该子进程,则立即出错返回。
相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
目录
相关文章
|
5天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
1天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
3天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
5天前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
17 6
|
5天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
4天前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
14 1
|
6天前
|
Linux Shell
Linux系统编程:掌握popen函数的使用
记得在使用完 `popen`打开的流后,总是使用 `pclose`来正确关闭它,并回收资源。这种做法符合良好的编程习惯,有助于保持程序的健壮性和稳定性。
26 3
|
7天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
3天前
|
Linux Shell
Linux系统
是对Linux系统进行管理的命令。对于Linux系统来说,无论是中央处理器、内存、磁盘驱动器、键盘、鼠标,还是用户等都是文件,Linux系统管理的命令是它正常运行的核心,与之前的DOS命令类似。linux命令在系统中有两种类型:内置Shell命令和Linux命令。
|
6天前
|
存储 监控 安全
探究Linux操作系统的进程管理机制及其优化策略
本文旨在深入探讨Linux操作系统中的进程管理机制,包括进程调度、内存管理以及I/O管理等核心内容。通过对这些关键组件的分析,我们将揭示它们如何共同工作以提供稳定、高效的计算环境,并讨论可能的优化策略。
13 0

热门文章

最新文章