数据结构——栈,队列,及其结构特点应用。2

简介: ​✅<1>主页:我的代码爱吃辣📃<2>知识讲解:数据结构——栈,队列。🔥<3>创作者:我的代码爱吃辣☂️<4>开发环境:Visual Studio 2022🏡<5>系统环境:windows 10💬<6>前言:今天来学习一下,数据结构中的栈和队列的实现和应用。

🍄(3)队列的应用:

LeetCode——225. 用队列实现栈


题目描述:


38901a4678a34675830259fb3c8eb847.png


思路:


每次入队数据都需要从不为空的队列进,这样可以保证


Push:进栈,对应到两个队列的操作就是,入不为空的队列。


Top:得到栈顶数据,对应到两个队列的操作就是,得到两个队列中不为空的队列的队尾数据。


Pop:删除栈顶数据,对应的两个队列的操作就是,删除不为空队列的队尾数据元素,但是由于队列结构的原因,要想删除队尾数据,就要先删除队尾前面的数据,所以我们可以先将队尾前面的数据放到另外一个空队列,再将队尾数据删除。


Empty:判断栈是否为空,对应的两个队列的操作就是,只有两个队列都已经没有数据时,栈才为空。


代码:

//队列结构
typedef int QUDateType;
typedef struct QueueNode
{
  QUDateType date;
  struct QueueNode* next;
}QueueNode;
typedef struct Queue
{
  QueueNode* head;
  QueueNode* tail;
  int size;
}Queue;
void QueueInit(Queue* pque)
{
  assert(pque);
  pque->head = NULL;
  pque->tail = NULL;
  pque->size = 0;
}
//进队列
void QueuePush(Queue* pque,QUDateType x)
{
  assert(pque);
  QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
  if (newnode == NULL)
  {
    perror("malloc");
    exit(-1);
  }
  newnode->date = x;
  newnode->next = NULL;
  if (pque->head == NULL)
  {
    pque->head = pque->tail = newnode;
  }
  else
  {
    pque->tail->next = newnode;
    pque->tail = newnode;
  }
  pque->size++;
}
//队列为空
bool QueueEmpty(Queue* pque)
{
  assert(pque);
  return pque->head == NULL && pque->tail == NULL;
}
//得到对头数据
QUDateType QueueFront(Queue*pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  return pque->head->date;
}
//得到队尾数据
QUDateType QueueBack(Queue* pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  return pque->tail->date;
}
//队列数据个数
int QueueSize(Queue* pque)
{
  assert(pque);
  return pque->size;
}
//删除队头数据
void QueuePop(Queue* pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  //队列中只有一个数据的时候
  if (pque->head->next == NULL)
  {
    free(pque->head);
    pque->tail = pque->head = NULL;
  }
  else
  {
    QueueNode* popnode = pque->head;
    pque->head = pque->head->next;
    free(popnode);
  }
  pque->size--;
}
//队列销毁
void QueueDestroy(Queue* pque)
{
  assert(pque);
  QueueNode* cur = pque->head;
  while (cur)
  {
    QueueNode* nextnode = cur->next;
    free(cur);
    cur = nextnode;
  }
  pque->head = pque->tail = NULL;
}
//封装两个队列
typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
//创建栈
MyStack* myStackCreate() {
    MyStack*Q=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&Q->q1);
    QueueInit(&Q->q2);
    return Q;
}
//将元素 x 压入栈顶。
void myStackPush(MyStack* obj, int x) {
    //找到空队列与非空队列
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    //将数据入空队列
    QueuePush(noempty,x);
}
//删除栈顶数据
int myStackPop(MyStack* obj) {
    assert(obj);
    //找到空队列与非空队列
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    //将非空队列只留一个数据,其他的全部出队到空队列
    while(QueueSize(noempty)>1)
    {
        QueuePush(empty,QueueFront(noempty));
        QueuePop(noempty);
    }
    //返回非空队列的最后一个数据
    int ret=QueueFront(noempty);
    QueuePop(noempty);
    return ret;
}
//返回栈顶数据
int myStackTop(MyStack* obj) {
    assert(obj);
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    return QueueBack(noempty);
}
//栈判空
bool myStackEmpty(MyStack* obj) {
    assert(obj);
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
//销毁栈
void myStackFree(MyStack* obj) {
    assert(obj);
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}

测试:



2.LeetCode——622. 设计循环队列

题目描述:



思路:在设计循环队列的时候,我们可以使用数组,或者链表都是可以的,这里我们就使用数组来实现循环队列。

1.MyCircularQueue(结构)

typedef struct {
    int *date;
    //最后一个数据的下一个坐标
    int tail;
    //头指针
    int head;
    循环队列的容量
    int k;
} MyCircularQueue;

2.MyCircularQueue(k)(创建)

在设计循环队列的时候,我们设计队列的容量时多开一个容量,目的是为了更好的分清队空和队满,队空和队满的时候,头尾坐标都会指在同一位置上。



 


MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue*Q=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    Q->date=(int *)malloc(sizeof(int)*(k+1));
    Q->tail=0;
    Q->head=0;
    Q->k=k;
    return Q;
}

3.myCircularQueueEnQueue(入队)

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    //先判断队列是否已经满了
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    //断言判断队列结构
    assert(obj);
    //在队尾出数据
    obj->date[obj->tail++]=value;
    //当数据尾部已经在数组的最后了,此时在进入数据后,
    //数据尾巴下标时刻保持在数据尾部的后一个下标的,
    //就要回到数组的头部位置。
    if(obj->tail==(obj->k)+1)
    {
        obj->tail=0;
    }
    return true;
}



4.Front(获取对头数据)

int myCircularQueueFront(MyCircularQueue* obj) {
    assert(obj);
    //队列不为空,才可以获得数据
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    return obj->date[obj->head];
}

5.deQueue(删除对头数据)

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    assert(obj);
    //队列不能为空
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    //如果head不在数组的尾部,直接head++
    obj->head++;
    //如果head,在数组的最后一个位置,此时head++以后需要循环到数组第一个位置
    if(obj->head==obj->k+1)
    {
        obj->head=0;
    }
    return true;
}



 

6.Rear(获得队尾数据)

int myCircularQueueRear(MyCircularQueue* obj) {
    assert(obj);
    //首先队列不能为空
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    //当数据尾在数组开头处,最后一个数据在数组的尾部
    //此时k就是数组的最后一个数据的下标
    if(obj->tail-1<0)
    {
        return obj->date[obj->k];
    }
    //如果数据尾部在数组中间或者是在数组尾部,数据尾部就是date[tail-1].
    return obj->date[obj->tail-1];
}



7.isEmpty(判断队列是否为空)

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    assert(obj);
    //头尾相等就是空。
    return obj->tail==obj->head;
}

8.isFull(判断队列是否满)

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    assert(obj);
    //当tail在数组的最后一个位置时,head在数组第一个位置。
    //tail不在数据的最后。
    return (obj->tail+1)%(obj->k+1)==obj->head;
}



9. 销毁队列

void myCircularQueueFree(MyCircularQueue* obj) {
    assert(obj);
    free(obj->date);
    free(obj);
}

代码:

typedef struct {
    int *date;
    int tail;
    int head;
    int k;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue*Q=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    Q->date=(int *)malloc(sizeof(int)*(k+1));
    Q->tail=0;
    Q->head=0;
    Q->k=k;
    return Q;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    assert(obj);
    obj->date[obj->tail++]=value;
    if(obj->tail==(obj->k)+1)
    {
        obj->tail=0;
    }
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    obj->head++;
    if(obj->head==obj->k+1)
    {
        obj->head=0;
    }
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    return obj->date[obj->head];
}
int myCircularQueueRear(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    if(obj->tail-1<0)
    {
        return obj->date[obj->k];
    }
    return obj->date[obj->tail-1];
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    assert(obj);
    return obj->tail==obj->head;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
    assert(obj);
    return (obj->tail+1)%(obj->k+1)==obj->head;
}
void myCircularQueueFree(MyCircularQueue* obj) {
    assert(obj);
    free(obj->date);
    free(obj);
}


测试:



🍂最后

要想改变我们的人生,第一步就是要改变我们的心态。只要心态是正确的,我们的世界就会的光明的。


 

相关文章
|
3天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
16 5
【数据结构】优先级队列(堆)从实现到应用详解
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
11天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
11天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
12天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
1月前
栈的几个经典应用,真的绝了
文章总结了栈的几个经典应用场景,包括使用两个栈来实现队列的功能以及利用栈进行对称匹配,并通过LeetCode上的题目示例展示了栈在实际问题中的应用。
栈的几个经典应用,真的绝了
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
负载均衡 网络协议 安全
DKDP用户态协议栈-kni
DKDP用户态协议栈-kni