数据结构——栈,队列,及其结构特点应用。2

简介: ​✅<1>主页:我的代码爱吃辣📃<2>知识讲解:数据结构——栈,队列。🔥<3>创作者:我的代码爱吃辣☂️<4>开发环境:Visual Studio 2022🏡<5>系统环境:windows 10💬<6>前言:今天来学习一下,数据结构中的栈和队列的实现和应用。

🍄(3)队列的应用:

LeetCode——225. 用队列实现栈


题目描述:


38901a4678a34675830259fb3c8eb847.png


思路:


每次入队数据都需要从不为空的队列进,这样可以保证


Push:进栈,对应到两个队列的操作就是,入不为空的队列。


Top:得到栈顶数据,对应到两个队列的操作就是,得到两个队列中不为空的队列的队尾数据。


Pop:删除栈顶数据,对应的两个队列的操作就是,删除不为空队列的队尾数据元素,但是由于队列结构的原因,要想删除队尾数据,就要先删除队尾前面的数据,所以我们可以先将队尾前面的数据放到另外一个空队列,再将队尾数据删除。


Empty:判断栈是否为空,对应的两个队列的操作就是,只有两个队列都已经没有数据时,栈才为空。


代码:

//队列结构
typedef int QUDateType;
typedef struct QueueNode
{
  QUDateType date;
  struct QueueNode* next;
}QueueNode;
typedef struct Queue
{
  QueueNode* head;
  QueueNode* tail;
  int size;
}Queue;
void QueueInit(Queue* pque)
{
  assert(pque);
  pque->head = NULL;
  pque->tail = NULL;
  pque->size = 0;
}
//进队列
void QueuePush(Queue* pque,QUDateType x)
{
  assert(pque);
  QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
  if (newnode == NULL)
  {
    perror("malloc");
    exit(-1);
  }
  newnode->date = x;
  newnode->next = NULL;
  if (pque->head == NULL)
  {
    pque->head = pque->tail = newnode;
  }
  else
  {
    pque->tail->next = newnode;
    pque->tail = newnode;
  }
  pque->size++;
}
//队列为空
bool QueueEmpty(Queue* pque)
{
  assert(pque);
  return pque->head == NULL && pque->tail == NULL;
}
//得到对头数据
QUDateType QueueFront(Queue*pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  return pque->head->date;
}
//得到队尾数据
QUDateType QueueBack(Queue* pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  return pque->tail->date;
}
//队列数据个数
int QueueSize(Queue* pque)
{
  assert(pque);
  return pque->size;
}
//删除队头数据
void QueuePop(Queue* pque)
{
  assert(pque);
  assert(!QueueEmpty(pque));
  //队列中只有一个数据的时候
  if (pque->head->next == NULL)
  {
    free(pque->head);
    pque->tail = pque->head = NULL;
  }
  else
  {
    QueueNode* popnode = pque->head;
    pque->head = pque->head->next;
    free(popnode);
  }
  pque->size--;
}
//队列销毁
void QueueDestroy(Queue* pque)
{
  assert(pque);
  QueueNode* cur = pque->head;
  while (cur)
  {
    QueueNode* nextnode = cur->next;
    free(cur);
    cur = nextnode;
  }
  pque->head = pque->tail = NULL;
}
//封装两个队列
typedef struct {
    Queue q1;
    Queue q2;
} MyStack;
//创建栈
MyStack* myStackCreate() {
    MyStack*Q=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&Q->q1);
    QueueInit(&Q->q2);
    return Q;
}
//将元素 x 压入栈顶。
void myStackPush(MyStack* obj, int x) {
    //找到空队列与非空队列
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    //将数据入空队列
    QueuePush(noempty,x);
}
//删除栈顶数据
int myStackPop(MyStack* obj) {
    assert(obj);
    //找到空队列与非空队列
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    //将非空队列只留一个数据,其他的全部出队到空队列
    while(QueueSize(noempty)>1)
    {
        QueuePush(empty,QueueFront(noempty));
        QueuePop(noempty);
    }
    //返回非空队列的最后一个数据
    int ret=QueueFront(noempty);
    QueuePop(noempty);
    return ret;
}
//返回栈顶数据
int myStackTop(MyStack* obj) {
    assert(obj);
    QueueNode*empty=&obj->q1;
    QueueNode*noempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        empty=&obj->q2;
        noempty=&obj->q1;
    }
    return QueueBack(noempty);
}
//栈判空
bool myStackEmpty(MyStack* obj) {
    assert(obj);
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
//销毁栈
void myStackFree(MyStack* obj) {
    assert(obj);
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}

测试:



2.LeetCode——622. 设计循环队列

题目描述:



思路:在设计循环队列的时候,我们可以使用数组,或者链表都是可以的,这里我们就使用数组来实现循环队列。

1.MyCircularQueue(结构)

typedef struct {
    int *date;
    //最后一个数据的下一个坐标
    int tail;
    //头指针
    int head;
    循环队列的容量
    int k;
} MyCircularQueue;

2.MyCircularQueue(k)(创建)

在设计循环队列的时候,我们设计队列的容量时多开一个容量,目的是为了更好的分清队空和队满,队空和队满的时候,头尾坐标都会指在同一位置上。



 


MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue*Q=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    Q->date=(int *)malloc(sizeof(int)*(k+1));
    Q->tail=0;
    Q->head=0;
    Q->k=k;
    return Q;
}

3.myCircularQueueEnQueue(入队)

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    //先判断队列是否已经满了
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    //断言判断队列结构
    assert(obj);
    //在队尾出数据
    obj->date[obj->tail++]=value;
    //当数据尾部已经在数组的最后了,此时在进入数据后,
    //数据尾巴下标时刻保持在数据尾部的后一个下标的,
    //就要回到数组的头部位置。
    if(obj->tail==(obj->k)+1)
    {
        obj->tail=0;
    }
    return true;
}



4.Front(获取对头数据)

int myCircularQueueFront(MyCircularQueue* obj) {
    assert(obj);
    //队列不为空,才可以获得数据
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    return obj->date[obj->head];
}

5.deQueue(删除对头数据)

bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    assert(obj);
    //队列不能为空
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    //如果head不在数组的尾部,直接head++
    obj->head++;
    //如果head,在数组的最后一个位置,此时head++以后需要循环到数组第一个位置
    if(obj->head==obj->k+1)
    {
        obj->head=0;
    }
    return true;
}



 

6.Rear(获得队尾数据)

int myCircularQueueRear(MyCircularQueue* obj) {
    assert(obj);
    //首先队列不能为空
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    //当数据尾在数组开头处,最后一个数据在数组的尾部
    //此时k就是数组的最后一个数据的下标
    if(obj->tail-1<0)
    {
        return obj->date[obj->k];
    }
    //如果数据尾部在数组中间或者是在数组尾部,数据尾部就是date[tail-1].
    return obj->date[obj->tail-1];
}



7.isEmpty(判断队列是否为空)

bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    assert(obj);
    //头尾相等就是空。
    return obj->tail==obj->head;
}

8.isFull(判断队列是否满)

bool myCircularQueueIsFull(MyCircularQueue* obj) {
    assert(obj);
    //当tail在数组的最后一个位置时,head在数组第一个位置。
    //tail不在数据的最后。
    return (obj->tail+1)%(obj->k+1)==obj->head;
}



9. 销毁队列

void myCircularQueueFree(MyCircularQueue* obj) {
    assert(obj);
    free(obj->date);
    free(obj);
}

代码:

typedef struct {
    int *date;
    int tail;
    int head;
    int k;
} MyCircularQueue;
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
bool myCircularQueueIsFull(MyCircularQueue* obj);
MyCircularQueue* myCircularQueueCreate(int k) {
    MyCircularQueue*Q=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    Q->date=(int *)malloc(sizeof(int)*(k+1));
    Q->tail=0;
    Q->head=0;
    Q->k=k;
    return Q;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
    if(myCircularQueueIsFull(obj))
    {
        return false;
    }
    assert(obj);
    obj->date[obj->tail++]=value;
    if(obj->tail==(obj->k)+1)
    {
        obj->tail=0;
    }
    return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return false;
    }
    obj->head++;
    if(obj->head==obj->k+1)
    {
        obj->head=0;
    }
    return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    return obj->date[obj->head];
}
int myCircularQueueRear(MyCircularQueue* obj) {
    assert(obj);
    if(myCircularQueueIsEmpty(obj))
    {
        return -1;
    }
    if(obj->tail-1<0)
    {
        return obj->date[obj->k];
    }
    return obj->date[obj->tail-1];
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
    assert(obj);
    return obj->tail==obj->head;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
    assert(obj);
    return (obj->tail+1)%(obj->k+1)==obj->head;
}
void myCircularQueueFree(MyCircularQueue* obj) {
    assert(obj);
    free(obj->date);
    free(obj);
}


测试:



🍂最后

要想改变我们的人生,第一步就是要改变我们的心态。只要心态是正确的,我们的世界就会的光明的。


 

相关文章
|
11天前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
127 75
|
11天前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
34 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
11天前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
29 7
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
283 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
44 1
|
11天前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
35 9
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
87 5
|
2月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
103 21
|
2月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
2月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
62 4

热门文章

最新文章