4、离线数仓数据同步策略(全量表数据同步、增量表数据同步、首日同步、采集通道脚本)(二)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 4、离线数仓数据同步策略(全量表数据同步、增量表数据同步、首日同步、采集通道脚本)(二)

脚本内容如下

#!/bin/bash
python ~/bin/gen_import_config.py -d gmall -t activity_info
python ~/bin/gen_import_config.py -d gmall -t activity_rule
python ~/bin/gen_import_config.py -d gmall -t base_category1
python ~/bin/gen_import_config.py -d gmall -t base_category2
python ~/bin/gen_import_config.py -d gmall -t base_category3
python ~/bin/gen_import_config.py -d gmall -t base_dic
python ~/bin/gen_import_config.py -d gmall -t base_province
python ~/bin/gen_import_config.py -d gmall -t base_region
python ~/bin/gen_import_config.py -d gmall -t base_trademark
python ~/bin/gen_import_config.py -d gmall -t cart_info
python ~/bin/gen_import_config.py -d gmall -t coupon_info
python ~/bin/gen_import_config.py -d gmall -t sku_attr_value
python ~/bin/gen_import_config.py -d gmall -t sku_info
python ~/bin/gen_import_config.py -d gmall -t sku_sale_attr_value
python ~/bin/gen_import_config.py -d gmall -t spu_info

(3)为gen_import_config.sh脚本增加执行权限

chmod 777 ~/bin/gen_import_config.sh

(4)执行gen_import_config.sh脚本,生成配置文件

gen_import_config.sh

(5)观察生成的配置文件

5、 测试生成的DataX配置文件

以activity_info为例,测试用脚本生成的配置文件是否可用。

1、创建目标路径

由于DataX同步任务要求目标路径提前存在,故需手动创建路径,当前activity_info表的目标路径应为/origin_data/gmall/db/activity_info_full/2020-06-14

hadoop fs -mkdir /origin_data/gmall/db/activity_info_full/2020-06-14

2、执行DataX同步命令

python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14" /opt/module/datax/job/import/gmall.activity_info.json

3、观察同步结果

6、全量表数据同步脚本

为方便使用以及后续的任务调度,此处编写一个全量表数据同步脚本。

(1)在~/bin目录创建mysql_to_hdfs_full.sh

脚本内容如下

#!/bin/bash
DATAX_HOME=/opt/module/datax
# 如果传入日期则do_date等于传入的日期,否则等于前一天日期
if [ -n "$2" ] ;then
    do_date=$2
else
    do_date=`date -d "-1 day" +%F`
fi
#处理目标路径,此处的处理逻辑是,如果目标路径不存在,则创建;若存在,则清空,目的是保证同步任务可重复执行
handle_targetdir() {
  hadoop fs -test -e $1
  if [[ $? -eq 1 ]]; then
    echo "路径$1不存在,正在创建......"
    hadoop fs -mkdir -p $1
  else
    echo "路径$1已经存在"
    fs_count=$(hadoop fs -count $1)
    content_size=$(echo $fs_count | awk '{print $3}')
    if [[ $content_size -eq 0 ]]; then
      echo "路径$1为空"
    else
      echo "路径$1不为空,正在清空......"
      hadoop fs -rm -r -f $1/*
    fi
  fi
}
#数据同步
import_data() {
  datax_config=$1
  target_dir=$2
  handle_targetdir $target_dir
  python $DATAX_HOME/bin/datax.py -p"-Dtargetdir=$target_dir" $datax_config
}
case $1 in
"activity_info")
  import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
  ;;
"activity_rule")
  import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
  ;;
"base_category1")
  import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
  ;;
"base_category2")
  import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
  ;;
"base_category3")
  import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
  ;;
"base_dic")
  import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
  ;;
"base_province")
  import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
  ;;
"base_region")
  import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
  ;;
"base_trademark")
  import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
  ;;
"cart_info")
  import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
  ;;
"coupon_info")
  import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
  ;;
"sku_attr_value")
  import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
  ;;
"sku_info")
  import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
  ;;
"sku_sale_attr_value")
  import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
  ;;
"spu_info")
  import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
  ;;
"all")
  import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
  import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
  import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
  import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
  import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
  import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
  import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
  import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
  import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
  ;;
esac

(2)为mysql_to_hdfs_full.sh增加执行权限

chmod 777 ~/bin/mysql_to_hdfs_full.sh

(3)测试同步脚本

mysql_to_hdfs_full.sh all 2020-06-14

(4)检查同步结果

查看HDFS目表路径是否出现全量表数据,全量表共15张。

2.2.6 增量表数据同步

1、数据通道


7b7c78b7788a44608aeb3a8aeccb10a2.png

2、 Flume配置

(1)Flume配置概述

Flume需要将Kafka中topic_db主题的数据传输到HDFS,故其需选用KafkaSource以及HDFSSink,Channel选用FileChannel。

需要注意的是, HDFSSink需要将不同mysql业务表的数据写到不同的路径,并且路径中应当包含一层日期,用于区分每天的数据。关键配置如下:

a4cc72f2cdc9492db04f181ad4b66125.png

具体数据示例如下:


f6afa477560b4bf4a82aa6a58f07906a.png

(2)Flume配置实操

(a)创建Flume配置文件

在hadoop104节点的Flume的job目录下创建kafka_to_hdfs_db.conf

配置内容如下

a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092
a1.sources.r1.kafka.topics = topic_db
a1.sources.r1.kafka.consumer.group.id = flume
a1.sources.r1.setTopicHeader = true
a1.sources.r1.topicHeader = topic
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.zhm.gmall.flume.interceptor.TimestampAndTableNameInterceptor$Builder
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior2
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior2/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6
## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{tableName}_inc/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = db
a1.sinks.k1.hdfs.round = false
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip
## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

(b)编写拦截器

新建一个Maven项目,并在pom.xml文件中加入如下配置

<dependencies>
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.9.0</version>
        <scope>provided</scope>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.62</version>
    </dependency>
</dependencies>
<build>
    <plugins>
        <plugin>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>2.3.2</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
            </configuration>
        </plugin>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

在com.zhm.gmall.flume.interceptor包下创建TimestampAndTableNameInterceptor类

package com.zhm.gmall.flume.interceptor;
import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;
public class TimestampAndTableNameInterceptor implements Interceptor {
    @Override
    public void initialize() {
    }
    @Override
    public Event intercept(Event event) {
        Map<String, String> headers = event.getHeaders();
String log = new String(event.getBody(), StandardCharsets.UTF_8);
    JSONObject jsonObject = JSONObject.parseObject(log);
    Long ts = jsonObject.getLong("ts");
    //Maxwell输出的数据中的ts字段时间戳单位为秒,Flume HDFSSink要求单位为毫秒
    String timeMills = String.valueOf(ts * 1000);
    String tableName = jsonObject.getString("table");
    headers.put("timestamp", timeMills);
    headers.put("tableName", tableName);
    return event;
    }
    @Override
    public List<Event> intercept(List<Event> events) {
        for (Event event : events) {
            intercept(event);
        }
        return events;
    }
    @Override
    public void close() {
    }
    public static class Builder implements Interceptor.Builder {
        @Override
        public Interceptor build() {
            return new TimestampAndTableNameInterceptor ();
        }
        @Override
        public void configure(Context context) {
        }
    }
}

重新打包。

将打好的包放入到hadoop104的/opt/module/flume/lib文件夹下

(3)通道测试

(a)启动Zookeeper、Kafka集群

(b)启动hadoop104的Flume

(c)生成模拟数据

(d)观察HDFS上的目标路径是否有数据出现

若HDFS上的目标路径已有增量表的数据出现了,就证明数据通道已经打通。

(e)数据目标路径的日期说明

仔细观察,会发现目标路径中的日期,并非模拟数据的业务日期,而是当前日期。这是由于Maxwell输出的JSON字符串中的ts字段的值,是数据的变动日期。而真实场景下,数据的业务日期与变动日期应当是一致的。

(4)编写Flume启停脚本

在hadoop102节点的/home/atguigu/bin目录下创建脚本f3.sh

填写以下内容

#!/bin/bash
case $1 in
"start")
        echo " --------启动 hadoop104 业务数据flume-------"
        ssh hadoop104 "nohup /opt/module/flume/bin/flume-ng agent -n a1 -c /opt/module/flume/conf -f /opt/module/flume/job/kafka_to_hdfs_db.conf >/dev/null 2>&1 &"
;;
"stop")
        echo " --------停止 hadoop104 业务数据flume-------"
        ssh hadoop104 "ps -ef | grep kafka_to_hdfs_db | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac

增加脚本执行权限

chmod 777 f3.sh

3、MaxWell配置

1、Maxwell时间戳问题

720d8aa84a16487d81061ab7f1b2a424.png

修改Maxwell配置文件config.properties,增加mock_date参数,如下

log_level=info
producer=kafka
kafka.bootstrap.servers=hadoop102:9092,hadoop103:9092
#kafka topic配置
kafka_topic=topic_db
#注:该参数仅在maxwell教学版中存在,修改该参数后重启Maxwell才可生效
mock_date=2020-06-14
# mysql login info
host=hadoop102
user=maxwell
password=maxwell
jdbc_options=useSSL=false&serverTimezone=Asia/Shanghai

重启Maxwell

重新生成模拟数据

4、增量表首日全量同步

通常情况下,增量表需要在首日进行一次全量同步,后续每日再进行增量同步,首日全量同步可以使用Maxwell的bootstrap功能,方便起见,下面编写一个增量表首日全量同步脚本。

(1)在~/bin目录创建mysql_to_kafka_inc_init.sh

脚本内容如下

#!/bin/bash
# 该脚本的作用是初始化所有的增量表,只需执行一次
MAXWELL_HOME=/opt/module/maxwell
import_data() {
    $MAXWELL_HOME/bin/maxwell-bootstrap --database gmall --table $1 --config $MAXWELL_HOME/config.properties
}
case $1 in
"cart_info")
  import_data cart_info
  ;;
"comment_info")
  import_data comment_info
  ;;
"coupon_use")
  import_data coupon_use
  ;;
"favor_info")
  import_data favor_info
  ;;
"order_detail")
  import_data order_detail
  ;;
"order_detail_activity")
  import_data order_detail_activity
  ;;
"order_detail_coupon")
  import_data order_detail_coupon
  ;;
"order_info")
  import_data order_info
  ;;
"order_refund_info")
  import_data order_refund_info
  ;;
"order_status_log")
  import_data order_status_log
  ;;
"payment_info")
  import_data payment_info
  ;;
"refund_payment")
  import_data refund_payment
  ;;
"user_info")
  import_data user_info
  ;;
"all")
  import_data cart_info
  import_data comment_info
  import_data coupon_use
  import_data favor_info
  import_data order_detail
  import_data order_detail_activity
  import_data order_detail_coupon
  import_data order_info
  import_data order_refund_info
  import_data order_status_log
  import_data payment_info
  import_data refund_payment
  import_data user_info
  ;;
esac

(2)为mysql_to_kafka_inc_init.sh增加执行权限

chmod 777 ~/bin/mysql_to_kafka_inc_init.sh

(3)测试同步脚本

(a)清理历史数据

hadoop fs -ls /origin_data/gmall/db | grep _inc | awk '{print $8}' | xargs hadoop fs -rm -r -f

(b)执行同步脚本

mysql_to_kafka_inc_init.sh all

(4)检查同步结果

观察HDFS上是否重新出现增量表数据。

2.3 采集通道启动/停止脚本

1、在/home/atguigu/bin目录下创建脚本cluster.sh

在脚本中填写如下内容

#!/bin/bash
case $1 in
"start"){
        echo ================== 启动 集群 ==================
        #启动 Zookeeper集群
        zk.sh start
        #启动 Hadoop集群
        hdp.sh start
        #启动 Kafka采集集群
        kf.sh start
        #启动采集 Flume
        f1.sh start
#启动日志消费 Flume
        f2.sh start
#启动业务消费 Flume
        f3.sh start
#启动 maxwell
        mxw.sh start
        };;
"stop"){
        echo ================== 停止 集群 ==================
#停止 Maxwell
        mxw.sh stop
#停止 业务消费Flume
        f3.sh stop
#停止 日志消费Flume
        f2.sh stop
#停止 日志采集Flume
        f1.sh stop
        #停止 Kafka采集集群
        kf.sh stop
        #停止 Hadoop集群
        hdp.sh stop
        #停止 Zookeeper集群
        zk.sh stop
};;
esac

2、增加脚本执行权限

chmod 777 cluster.sh

3、数仓环境准备

Hive的安装和部署

就是安装配置一下Hive就行

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
运维 DataWorks 数据管理
数据管理DMS使用问题之正在使用“同步表”功能,如何设置数据同步的过期时间
阿里云数据管理DMS提供了全面的数据管理、数据库运维、数据安全、数据迁移与同步等功能,助力企业高效、安全地进行数据库管理和运维工作。以下是DMS产品使用合集的详细介绍。
数据管理DMS使用问题之正在使用“同步表”功能,如何设置数据同步的过期时间
|
6月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
4月前
|
canal 关系型数据库 MySQL
"揭秘阿里数据同步黑科技Canal:从原理到实战,手把手教你玩转MySQL数据秒级同步,让你的数据处理能力瞬间飙升,成为技术界的新晋网红!"
【8月更文挑战第18天】Canal是一款由阿里巴巴开源的高性能数据同步系统,它通过解析MySQL的增量日志(Binlog),提供低延迟、可靠的数据订阅和消费功能。Canal模拟MySQL Slave与Master间的交互协议来接收并解析Binary Log,支持数据的增量同步。配置简单直观,包括Server和Instance两层配置。在实战中,Canal可用于数据库镜像、实时备份等多种场景,通过集成Canal Client可实现数据的消费和处理,如更新缓存或写入消息队列。
815 0
|
5月前
|
监控 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行数据同步时,重新创建了一个新的任务,但发现无法删除旧任务同步的历史数据,是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
分布式计算 DataWorks 关系型数据库
DataWorks操作报错合集之离线同步任务中,把表数据同步到POLARDB,显示所有数据都是脏数据,报错信息:ERROR JobContainer - 运行scheduler 模式[local]出错.是什么原因
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
6月前
|
SQL 监控 Java
实时计算 Flink版产品使用问题之在进行数据同步时,修改了YAML文件以增加新的同步表并取消了之前的同步任务,如何从之前的检查点继续执行
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
消息中间件 JSON Java
离线数仓(四)【数仓数据同步策略】(4)
离线数仓(四)【数仓数据同步策略】
|
4月前
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之如何处理数据同步时(mysql->hive)报:Render instance failed
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
2月前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
129 1
|
3月前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
735 4

热门文章

最新文章