如何画领域模型图(数据架构/ER图)

简介: 如何画领域模型图(数据架构/ER图)

数据架构重要的输出是数据-实体关系图,简称 ER 图。ER 图中包含了实体(数据对象)、关系和属性 3 种基本成分。ER 图可以用来建立数据模型。如何准确的建立产品的数据模型,需要分解出业务需要什么样的数据。数据域的分解过程是站在业务架构的基础上,对业务域进行模型分析的过程。说起业务建模,大家很快会想到领域模型这个概念。这里的思路是通过领域建模来逐步提取系统的数据架构图。

说到领域模型,这里采用四色原型法进行业务模型的抽象。在进行四色模型分析前,我们先了解下四色模型的一些基本概念。四色模型,顾名思义是通过四种不同颜色代表四种不同的原型。

  • Moment-Interval Archetype 时标性原型
  • 表示事物在某个时刻或某一段时间内发生的。使用红色表示,简写为 MI.
  • Part-Place-Thing Archetype 参与方-地点-物品原型.
  • 表示参与扮演不同角色的人或事物。使用绿色表示。简写为 PPT。
  • Role Archetype 角色原型
  • 角色是一种参与方式,它由人或组织机构、地点或物品来承担。使用黄色表示。简写为 Role。
  • Description Archetype 描述原型
  • 表示资料类型的资源,它可以被其它原型反复使用,并为其它原型提供行为。使用蓝色表示。简写为 DESC。

以风控系统为例,进行领域建模的过程如下:

1.关键流程

在进行业务建模前,首先需要梳理出业务的流程,这一步在业务架构分解环节中已经完成。按照四色建模法的原则,将业务流程图进行一点改造。在原来的流程图上,将流程涉及的事务和角色添加进来。
改造之后的流程图如下:

2.领域模型骨干

从业务流中,我们可以清晰的定义出 Moment-Interval Archetype (时标性原型),流程中的每个节点符合 MI 的定义,即事物在某个时间段内发生。在 MI 的定义过程中,一种方法是通过名词+动词进行定义。那么,风控的 MI 即为:数据采集、规则 &模型设置、风险识别、告警通知、风险处置、风险分析(MI 使用红色表示)。

在得到骨干之后,我们需要丰富这个模型,使它可以更好的描述业务概念。这里需要补充一些实体对象,通常实体对象包括:参与方、地点、物(party/place/thing)。

Part-Place-Thing Archetype(参与方-地点-物品原型):业务对象、规则、模型、异常风险、通知、异常事件、分析报告(PPT 使用绿色表示)。

领域模型骨干图,如下:

3.领域模型角色

在领域模型骨干的基础上,需要把参与的角色(role)带进来。Role 使用黄色表示。如下图:

4.领域模型描述

最后将模型的描述信息添加进来,模型的描述信息中涵盖模型的具体属性。这些描述信息对于后面数据库设计有很大的影响。模型描述使用蓝色标注,如下图:

5.提取 ER 图

领域模型构建完成之后,在此基础上,我们已经能够初步的掌握整个系统的数据模型。其中绿色的 Part-Place-Thing Archetype(参与方-地点-物品原型),可以用来表示 ER 图中的实体模型。红色的 Moment-Interval Archetype(时标性原型),可以用来表示 ER 图中的关系。对领域模型架构图进行提炼,得到如下图:

实体(Entity)和联系(RelationShip)存在一定的关联关系,一般存在 3 种约束性关系: 一对一约束、一对多约束和多对多约束。将这些约束性关系表现在 ER 图中,用于展现实体与实体间具体的关联关系,最终输出 ER 图。(考虑保证 ER 的简洁性,这里并没有把模型的属性画进来)

目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
146 66
|
29天前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
73 0
|
26天前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
61 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
69 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
1月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
2月前
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
86 4
|
2月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
40 5
|
2月前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
72 6
|
2月前
|
机器学习/深度学习 数据采集
详解Diffusion扩散模型:理论、架构与实现
【9月更文挑战第23天】扩散模型(Diffusion Models)是一类基于随机过程的深度学习模型,通过逐步加噪和去噪实现图像生成,在此领域表现优异。模型分正向扩散和反向生成两阶段:前者从真实数据加入噪声至完全噪音,后者则学习从噪声中恢复数据,经由反向过程逐步还原生成清晰图像。其主要架构采用U-net神经网络,实现过程中需数据预处理及高斯噪声添加等步骤,最终通过模型逆向扩散生成新数据,具有广泛应用前景。

热门文章

最新文章