m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

简介: m基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输matlab仿真,输出误码率曲线,并用实际图片进行测试

1.算法仿真效果
matlab2022a仿真结果如下:

75ae6cfbcde758ab104c94db55dc0bcf_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
2662a2fde973ef92b0036844c3987587_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f05bb99ed027a3505ede1b921ad1994b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
dc94a04661dc9d20130ebc0a9d92832d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于OFDM+QPSK和DNN深度学习信道估计的无线图像传输"是一种无线通信系统,它利用正交频分复用(OFDM)和四相位偏移键控(QPSK)技术来传输图像数据,并借助深度神经网络(DNN)来进行信道估计,从而提高信号传输的可靠性和效率。

   OFDM是一种常用的多载波调制技术,它将高速数据流分为多个低速子载波,并使每个子载波之间正交,从而提高频谱利用率和抗干扰能力。QPSK是一种常见的调制方式,它将每两个比特映射为一个复数信号点,每个信号点对应四个相位(0°、90°、180°、270°)。无线图像传输系统由发送端和接收端组成。发送端将图像数据转换为比特流,然后采用QPSK调制和OFDM技术将比特流映射到不同的子载波上,生成OFDM符号序列。接收端接收OFDM符号序列,并利用DNN进行信道估计,根据估计得到的信道状态信息对接收信号进行解调和解调制,最终恢复出原始图像数据。

c08d2b0283a4c44e97cb2a1426ce1df0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DNN是一种深度学习模型,用于从接收信号中学习信道特征。DNN的输入是接收信号的采样值,输出是对应的信道状态信息。训练DNN需要使用已知信道状态信息的样本,通过梯度下降等优化算法来调整DNN的参数,使其能够准确地估计信道状态信息。 

实现过程

图像编码:将图像数据转换为比特流。

QPSK调制:将比特流映射为QPSK符号。

OFDM调制:将QPSK符号映射到不同的OFDM子载波上,生成OFDM符号序列。

信道传输:通过无线信道传输OFDM符号序列,引入噪声和衰落。

接收和采样:接收端对信号进行采样,得到接收信号的采样值。

DNN信道估计:使用已知信道状态信息的样本训练DNN模型,得到信道估计模型。

信道估计:利用DNN模型对接收信号进行信道估计,得到信道状态信息。

解调和解码:根据信道状态信息对接收信号进行解调和解码,恢复出原始图像数据。

3.MATLAB核心程序

clear;
close all;
warning off;
addpath 'func\'
Ttrain  = load('T_train.mat'); 

Ptrain2 = [];
Ttrain2 = [];

for i = 1
    for j = 1:1
        Ptrain = load(['P_train',num2str(i),'_',num2str(j),'.mat']);   
        Ptrain2 = [Ptrain2;Ptrain.Ch_feature  ];
        Ttrain2 = [Ttrain2;Ttrain.Ch_feature  ];
    end
end

%输入层权值和偏移值
WI     = rand(size(Ttrain2))/1000;
BI     = rand(size(Ttrain2))/1000;
%定义4个隐含层
W1     = rand(size(Ttrain2));
BI1    = rand(size(Ttrain2));
W2     = rand(size(Ttrain2)/2);
BI2    = rand(size(Ttrain2)/2);
%输出层
WO     = rand(size(Ttrain2)/2);
BO     = rand(size(Ttrain2)/2);
%学习率
Lr     = 0.0005;
%迭代次数
Iter   = 2000;

for  it = 1:Iter
     it
     %训练
     tmps1  = Ptrain2.*WI+BI;
     tmps2  = tmps1.*W1+BI1;  
     %激活的
     tmps2_ = [];
     tmps2_ = func_ReLu(tmps2);

     tmps3  = tmps2_(1:2:end,1:2:end).*W2+BI2; 
     tmps4  = tmps3.*WO+BO;             
     error  = (Ttrain2(1:2:end,1:2:end)-tmps4);

     %更新权值
     W1     = W1 + Lr*repmat(error,2,2);
     BI1    = BI1+ Lr*repmat(error,2,2);
     W2     = W2 + Lr*error;
     BI2    = BI2+ Lr*error;
     %输出层
     WO     = WO + Lr*error;
     BO     = BO + Lr*error;
     errors(it) = mean2(abs(error));
end

figure;
plot(errors,'b','linewidth',2);
grid on
xlabel('训练次数');
ylabel('训练误差');

save dl0.mat errors WI BI W1 BI1 W2 BI2 WO BO
相关文章
|
18天前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
123 76
|
2月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
58 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
29天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
43 20
|
2月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
54 16
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
76 5
|
16天前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
16天前
|
存储 测试技术 数据库
接口测试工具攻略:轻松掌握测试技巧
在互联网快速发展的今天,软件系统的复杂性不断增加,接口测试工具成为确保系统稳定性的关键。它如同“翻译官”,模拟请求、解析响应、验证结果、测试性能并支持自动化测试,确保不同系统间信息传递的准确性和完整性。通过Apifox等工具,设计和执行测试用例更加便捷高效。接口测试是保障系统稳定运行的第一道防线。
|
16天前
|
Web App开发 JSON 测试技术
API测试工具集合:让接口测试更简单高效
在当今软件开发领域,接口测试工具如Postman、Apifox、Swagger等成为确保API正确性、性能和可靠性的关键。Postman全球闻名但高级功能需付费,Apifox则集成了API文档、调试、Mock与自动化测试,简化工作流并提高团队协作效率,特别适合国内用户。Swagger自动生成文档,YApi开源但功能逐渐落后,Insomnia界面简洁却缺乏团队协作支持,Paw仅限Mac系统。综合来看,Apifox是国内用户的理想选择,提供中文界面和免费高效的功能。
|
2月前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
120 11
|
3月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
88 3

热门文章

最新文章