【数据结构和算法】认识线性表中的链表,并实现单向链表(下)

简介: 【数据结构和算法】认识线性表中的链表,并实现单向链表(下)

6.在pos结点位置删除数据(删除pos结点)

如图所示:

代码如下:

//在pos位子删除数据
void ListErase(List** ps, List* pos) {
  assert(ps);
  assert(pos);
  if (*ps == pos) {
    ListPopFront(ps);
  }
  else {
    List* next = *ps;
    while (next->next != pos) {
      next = next->next;
    }
    //这个时候next->next == pos
    next->next = next->next->next;
    /*free(next->next);*/
    free(pos);
    pos = NULL;
  }
}

7.删除pos位置之后一个结点

如图所示:

代码如下:

//在pos位置之后一位删除数据
void ListEraseAfter(List* pos) {
  assert(pos);
  List* next = pos->next;//将pos 的下一个结点赋值给next
  if (next != NULL) {
    pos->next = pos->next->next;//表示pos的下一个的下一个结点的地址赋值给pos的指针域  实质上是将pos的下一个结点给跳过
    free(next);  //将pos的下一个结点给free释放
    next = NULL;  //next指向为NULL  防止野指针
  }
}

8.摧毁链表

代码如下:

//链表的摧毁  直接将头指针指针域指向NULL
void ListDestory(List** ps) {
  //assert(ps);  //防止空链表
  一个结点一个结点释放
  //List* next = *ps;
  //while (next) {
  //  List* cur = next->next;
  //  free(next);
  //  next = cur;
  //}
  *ps = NULL;
}

因为是二级指针,所以直接 *ps=NULL 即可,或者一个一个free

三、完整代码

1.LinkList.h

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<assert.h>
typedef int SLDataType;
//单向链表的实现、
typedef struct ListNode {
  SLDataType data;//数据域
  struct ListNode* next;//指针域
}List;
//打印单链表
void ListPrint(List* ps);
//单链表的尾插
void ListPushBack(List** ps, SLDataType data);
//单链表的头插
void ListPushFront(List** ps, SLDataType data);
//单链表的尾删
void ListPopBack(List** ps);
//单链表的头删
void ListPopFront(List** ps);
//单链表的查找
List* ListFind(List* ps);
//在pos位置上插入数据
void ListInsertBefore(List** ps, SLDataType x, List* pos);
//在pos位置之后插入数据
void ListInsertAfter(List** ps, SLDataType x, List* pos);
//在pos位子删除数据
void ListErase(List** ps, List* pos);
//在pos位置之后一位删除数据
void ListEraseAfter(List* pos);
//单链表的摧毁
void ListDestory(List** ps);

2.LinkList.c

#define _CRT_SECURE_NO_WARNINGS
#include"单向链表.h"
//链表的使用,在插入上面
// 如果是尾部插入,如果是空链表直接将新节点给ps 是先找到链表尾部,然后创建新节点,连接即可
// 如果是头部插入,先进行断言判空,之后创建新节点,将新节点的数据
// new->next=ps  这个是找到对应的位置,连接起来
// ps=new;  将新节点的信息传递给ps,这样ps还是头节点
// 
// 
// 
// 
// 
//进行单链表的实现
//初始化链表
void InitList(List* ps) {
  ps->data = 0;
  ps->next = NULL;
}
//打印单链表
void ListPrint(List* ps) {
  List* cur = ps;
  while ((cur) != NULL) {
    printf("%d -> ", cur->data);
    cur = cur->next;
  }
  printf("NULL\n");
}
//创建一个新节点
List* CreateNode(SLDataType x) {
  List* newNode = (List*)malloc(sizeof(List));
  if (newNode == NULL) {
    perror("malloc fail\n");
    exit(-1);
  }
  else {
    newNode->data = x;
    newNode->next = NULL;
  }
  return newNode;
}
//单链表的尾插
void ListPushBack(List** ps, SLDataType data) {
  //创建新的节点
  assert(ps);//断言
  List* newNode = CreateNode(data);
  if (*ps == NULL) {
    //说明是空链表
    *ps = newNode;
  }
  else {
    List* tail = *ps;
    while (tail->next != NULL) {
      tail = tail->next;
    }
    tail->next = newNode;
  }
}
//单链表的头插
void ListPushFront(List** ps, SLDataType data) {
  //先断言是否为空
  assert(ps);
  //将新地址指向头结点下一个next结点的地址,然后在用头结点指向新节点
  List* newNode = CreateNode(data);
  newNode->next = (*ps);  //new指向ps当前的位置,然后new是第一个位置了,将new赋值给ps,这样new就作为头部连接链表了
  (*ps) = newNode;//原本ps位置的数值不变,这样的话就成 new->next=ps,new数值在前,ps的数值在后
}
//单链表的尾删
void ListPopBack(List** ps) {
  assert(ps);//断言
  //三种情况
  //1.空链表
  //2.一个节点
  //3.多个节点
  if (*ps == NULL) {
    return;
  }
  //只有一个节点的情况为
  else if ((*ps)->next == NULL) {
    free(*ps); //如果只有一个头节点的话
    *ps = NULL;
  }
  else {
    //多个节点的情况下、
    List* tail = *ps;
    while (tail->next->next!= NULL) {
      tail = tail->next;
    }
    free(tail->next);
    tail->next= NULL;
  }
}
//单链表的头删
void ListPopFront(List** ps) {
  assert(ps);
  //1.空
  //2.非空
  if (*ps == NULL) {
    //为空
    return;
  }
  else {
    List* tail = (*ps)->next;//创建临时变量tail,将头节点之后的地址给tail
    free(*ps);//滞空头节点
    *ps = NULL;//可有可不有,接下来也要用
    *ps = tail;//将tail也就是ps的下一个List节点给ps
  }
}
//单链表的查找
List* ListFind(List* ps,SLDataType data) {
  //进行查找就是进行判断是否为空链表,为空直接返回
  if (ps == NULL) {
    printf("链表为空、无法查找\n");
    return;
  }
  List* tail = ps;
  while (tail != NULL) {//从头节点开始,进行循环,
    if (tail->data == data) {
      return tail;
    }
    tail = tail->next;
  }
  return tail;
}
//在pos位置上插入数据
void ListInsertBefore(List** ps, SLDataType x, List* pos) {
  //先判断是否为空
  assert(ps);
  assert(pos);
  //空链表排除
  //1.pos是第一个节点
  //2.pos不是第一个节点
  if (*ps == pos) {
    //是第一个节点,那就直接头插
    ListPushFront(ps, x);
  }
  else {
    List* prev = *ps;
    while (prev->next != pos) {
      prev = prev->next;
    }
    List* newnode = CreateNode(x);
    prev->next = newnode;
    newnode->next = pos;
  }
}
//在pos位置之后插入数据
void ListInsertAfter(List** ps, SLDataType x, List* pos) {
  assert(ps);
  //assert(pos);//断言
  List* newnode = CreateNode(x);
  newnode->next = pos->next;
  pos->next = newnode;
}
//在pos位子删除数据
void ListErase(List** ps, List* pos) {
  assert(ps);
  assert(pos);
  if (*ps == pos) {
    ListPopFront(ps);
  }
  else {
    List* next = *ps;
    while (next->next != pos) {
      next = next->next;
    }
    //这个时候next->next == pos
    next->next = next->next->next;
    /*free(next->next);*/
    free(pos);
    pos = NULL;
  }
}
//在pos位置之后一位删除数据
void ListEraseAfter(List* pos) {
  assert(pos);
  List* next = pos->next;//将pos 的下一个结点赋值给next
  if (next != NULL) {
    pos->next = pos->next->next;//表示pos的下一个的下一个结点的地址赋值给pos的指针域  实质上是将pos的下一个结点给跳过
    free(next);  //将pos的下一个结点给free释放
    next = NULL;  //next指向为NULL  防止野指针
  }
}
//链表的摧毁  直接将头指针指针域指向NULL
void ListDestory(List** ps) {
  //assert(ps);  //防止空链表
  一个结点一个结点释放
  //List* next = *ps;
  //while (next) {
  //  List* cur = next->next;
  //  free(next);
  //  next = cur;
  //}
  *ps = NULL;
}

3.test.c

#define _CRT_SECURE_NO_WARNINGS
#include"单向链表.h"
void test()
{
  List* phead=NULL;//作为头节点
  //单链表的尾插
  ListPushBack(&phead, 1);
  ListPushBack(&phead, 2);
  ListPushBack(&phead, 3);
  ListPushBack(&phead, 4);
  ListPushBack(&phead, 5);
  ListPrint(phead);
  ListPushFront(&phead, 1);
  ListPrint(phead);
  ListPopBack(&phead);
  ListPrint(phead);
  ListPopFront(&phead);
  ListPrint(phead);
  ListErase(&phead, phead->next);
  ListInsertAfter(&phead, 10, phead->next);
  ListEraseAfter(phead->next);
  ListPrint(phead);
  ListDestory(&phead);
}
int main()
{
  test();
  return 0;
}

总结

本文主要讲解了链表的分类是什么,两种常用的类型,无头单向非循环链表、有头双向循环链表,我们实现了无头单向非循环链表,这是比较简单的一种链表的实现,我们使用的是二级指针传参,当然使用一级指针传参也可以,主要实现函数为头尾插入,头尾删除,pos指定结点位置前后添加或者删除元素。

接下来,下文我们将跟大家介绍一下最常用链表的另一种形式,带头双向循环链表。

相关文章
|
5月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
177 1
|
5月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
175 0
|
9月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
266 3
 算法系列之数据结构-Huffman树
|
9月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
391 22
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
1059 9
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
307 59
|
6月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
140 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
11月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
557 77
|
10月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
257 11

热门文章

最新文章