基于python+django的图书借阅网站-图书借阅管理系统

简介: 该系统是基于python+django开发的在线图书借阅管理系统。系统适合场景:大学生、课程作业、系统设计、毕业设计。

该系统是基于python+django开发的在线图书借阅管理系统。系统适合场景:大学生、课程作业、系统设计、毕业设计。

演示地址

前台地址: http://book.gitapp.cn

后台地址:http://book.gitapp.cn/#/admin

后台管理帐号:

用户名:admin123
密码:admin123

源码地址

https://github.com/geeeeeeeek/python_book

功能介绍

平台采用B/S结构,后端采用主流的Python语言+django框架进行开发,前端采用主流的Vue.js进行开发。

整个平台包括前台和后台两个部分。

  • 前台功能包括:首页、图书详情页、用户中心模块。
  • 后台功能包括:总览、借阅管理、图书管理、分类管理、标签管理、评论管理、用户管理、运营管理、日志管理、系统信息模块。

代码结构

  • bookproject目录是后端代码
  • web目录是前端代码

部署运行

后端运行步骤

(1) 安装python 3.8

(2) 安装依赖。进入bookproject目录下,执行 pip install -r requirements.txt

(3) 安装mysql 5.7数据库,并创建数据库,命名为book,创建SQL如下:

CREATE DATABASE IF NOT EXISTS book DEFAULT CHARSET utf8 COLLATE utf8_general_ci

(4) 迁移数据。在bookproject目录下依次执行如下命令:

python manage.py makemigrations
python manage.py migrate
python manage.py makemigrations myapp
python manage.py migrate myapp

(5) 启动django服务。在bookproject目录下执行:

python manage.py runserver

前端运行步骤

(1) 安装node 16.14

(2) 进入web目录下,安装依赖,执行:

npm install

(3) 运行项目

npm run serve

待完善功能

  • 邮箱推送功能
  • 手机号绑定功能
  • 粉丝关注功能
目录
相关文章
|
16天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
41 4
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
56 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
17 4
基于Python深度学习的果蔬识别系统实现
|
1月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
150 45
|
1月前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
51 2
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
71 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
158 6
|
1月前
|
安全 数据库 开发者
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
51 2