Python 基础 之 Python3 迭代器与生成器 5

简介: Python3 迭代器与生成器

Python 基础 之 Python3 迭代器与生成器 5

Python3 迭代器与生成器

生成器

在 Python 中,使用了 yield 的函数被称为生成器(generator)。

yield 是一个关键字,用于定义生成器函数,生成器函数是一种特殊的函数,可以在迭代过程中逐步产生值,而不是一次性返回所有结果。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

当在生成器函数中使用 yield 语句时,函数的执行将会暂停,并将 yield 后面的表达式作为当前迭代的值返回。

然后,每次调用生成器的 next() 方法或使用 for 循环进行迭代时,函数会从上次暂停的地方继续执行,直到再次遇到 yield 语句。这样,生成器函数可以逐步产生值,而不需要一次性计算并返回所有结果。

调用一个生成器函数,返回的是一个迭代器对象。

下面是一个简单的示例,展示了生成器函数的使用:

实例

def countdown(n):
    while n > 0:
        yield n
        n -= 1

# 创建生成器对象
generator = countdown(5)

# 通过迭代生成器获取值
print(next(generator))  # 输出: 5
print(next(generator))  # 输出: 4
print(next(generator))  # 输出: 3

# 使用 for 循环迭代生成器
for value in generator:
    print(value)  # 输出: 2 1

执行以上程序,输出结果如下:

5
4
3
2
1
目录
相关文章
|
2月前
|
机器学习/深度学习 设计模式 大数据
30天拿下Python之迭代器和生成器
30天拿下Python之迭代器和生成器
20 3
|
6月前
|
Python
【Python操作基础】——字典,迭代器和生成器
【Python操作基础】——字典,迭代器和生成器
|
1月前
|
存储 大数据 Python
Python 中迭代器与生成器:深度解析与实用指南
Python 中迭代器与生成器:深度解析与实用指南
17 0
|
4月前
|
Python
python解包迭代器或生成器
【7月更文挑战第1天】
35 3
|
4月前
|
Python
python解包迭代器或生成器
【7月更文挑战第1天】
42 1
|
5月前
|
存储 大数据 索引
Python迭代器与生成器概览
【6月更文挑战第20天】迭代器提供不依赖索引的元素访问,支持`__next__()`和`iter()`,惰性计算节省内存,但不可回溯且无长度。生成器是特殊的迭代器,用`yield`动态生成值,更节省内存,代码简洁。创建迭代器可通过`iter()`函数,而生成器通过`yield`函数或生成器表达式实现。在处理大数据时尤为有用。
32 2
|
5月前
|
算法 大数据 数据处理
Python 迭代器和生成器有什么用?
**Python 迭代器与生成器巧妙用法** 本文探讨了 Python 中迭代器和生成器的实际应用场景。迭代器通过 `__iter__()` 和 `__next__()` 方法支持迭代操作,适用于处理大数据或动态数据流。例如,创建一个 `CountDown` 类实现倒计时迭代。生成器简化代码,如 `fibonacci` 函数用于生成斐波那契数列。此外,迭代器可用于分页、连接多个迭代器和过滤数据。生成器则擅长处理大文件、生成无限序列和实现斐波那契数列,还可构建数据处理管道和使用生成器表达式。掌握这些技巧能提升代码效率和处理问题的能力
|
4月前
|
缓存 测试技术 Python
python的装饰器是什么?有什么作用?迭代器和生成器的区别?
python的装饰器是什么?有什么作用?迭代器和生成器的区别?
|
5月前
|
大数据 Python 数据采集
Python中的迭代器与生成器:高效处理大数据集的利器
Python中的迭代器和生成器是处理大数据集时的利器,它们能够高效地处理大量数据而不会占用太多内存。本文将介绍迭代器和生成器的概念、使用方法以及在处理大数据集时的优势,并通过示例代码演示它们的应用。
|
6月前
|
存储 缓存 算法
Python迭代器、生成器
【5月更文挑战第16天】
41 1
下一篇
无影云桌面