让AI绘图动起来并走进现实——LoRA模型-3D - Anagly

简介: 让AI绘图动起来并走进现实——LoRA模型-3D - Anagly

AI绘图动起来并走进现实——LoRA模型-3D - Ana

这是什么?预览图像看起来很糟糕!

这是一个LoRA,由Elldreth和TheAlly构思和训练,它产生一致的,可用的3D浮雕图像,没有任何插件或扩展,或昂贵的耳机*。只需启用LoRA,将强度设置为1,并像往常一样提示。

如果你没有3D浮雕眼镜,是的,图像会看起来很糟糕!

什么是浮雕图像?

浮雕图像是一种3D图像,它使用颜色来创造深度的错觉。这张图片是由同一张图片的两个略微不同的版本组成的,一个是红色的,一个是蓝色的。要看到完整的3D效果,你需要戴上一副浮雕眼镜,它有一个红色的镜片和一个蓝色的镜片。

这种眼镜可以让你看到两个不同版本的图像,你的大脑将它们融合在一起,创造出一种深度感。这两幅图像使用红色和蓝色的原理是,红色和蓝色是光谱中距离最远的颜色,因此可以提供最大的对比,从而产生更明显的3D效果。

*浮雕眼镜很便宜,可以在亚马逊和其他零售商上买到。

我可以不戴眼镜看这些图片吗?

这里有一个基本的浮雕查看器。这将允许你预览一些深度的图像。

注意事项!

虽然这个LoRA可以始终如一地产生优秀的结果,但它会输出3D效果似乎不起作用的图像,有时会产生不连贯的结果。这是实验!和所有稳定扩散代一样,种子也有运气的成分——请重新滚动。

有些模式可能比其他模式更好!我们已经测试了一些主要的模型,我们自己的Lucid和Churned混合,收到积极的结果。它似乎不太适合NAI和Anything v3,但与Berry's Mix表现良好。

雇佣修复似乎要么减少3D效果,或产生在图像质量的损失-小心。

还要注意,此模型的示例图像旨在让您了解模型的能力,并演示深度效果的可能性,不一定是100%可复制的——由于我的Web UI的设置。

你可以在Automatic1111的SD UI上使用深度地图脚本插件来创建anaglyphs,它做得更好!但我认为LoRA和提示对许多人来说比复杂的扩展更容易访问。

相关文章
|
3天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
35 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
3天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
33 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
4天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
17 5
【AI系统】模型转换流程
|
1天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
24 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
4天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
18 4
【AI系统】模型转换基本介绍
|
4天前
|
机器学习/深度学习 人工智能 算法
【AI系统】模型压缩基本介绍
模型压缩旨在通过减少存储空间、降低计算量和提高计算效率,降低模型部署成本,同时保持模型性能。主要技术包括模型量化、参数剪枝、知识蒸馏和低秩分解,广泛应用于移动设备、物联网、在线服务系统、大模型及自动驾驶等领域。
27 4
【AI系统】模型压缩基本介绍
|
4天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型剪枝
本文概述了模型剪枝的概念、方法及流程,旨在通过移除神经网络中冗余或不重要的参数,实现模型规模的减小和效率的提升。剪枝不仅有助于降低模型的存储和计算需求,还能增强模型的泛化能力。文章详细介绍了剪枝的定义、分类、不同阶段的剪枝流程,以及多种剪枝算法,如基于参数重要性的方法、结构化剪枝、动态剪枝和基于优化算法的全局剪枝策略。通过这些方法,可以在保持模型性能的同时,显著提高模型的计算速度和部署灵活性。
16 2
【AI系统】模型剪枝
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
|
1天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用