【MATLAB第37期】 #保姆级教程 XGBOOST模型参数完整且详细介绍,调参范围、思路及具体步骤介绍

简介: 【MATLAB第37期】 #保姆级教程 XGBOOST模型参数完整且详细介绍,调参范围、思路及具体步骤介绍

【MATLAB第37期】 #保姆级教程 XGBOOST模型参数完整且详细介绍,调参范围、思路及具体步骤介绍


一、XGBOOST参数介绍


(一)模型参数


1.XGBoost模型[default=gbtree]

有两种模型可以选择gbtree和gblinear。gbtree使用基于树的模型进行提升计算,gblinear使用线性模型进行提升计算。其中gbtree的效果要远好于gblinear。


2.objective目标函数 [ default=reg:linear ]

定义学习任务及相应的学习目标,可选的目标函数如下:

“reg:linear” –线性回归。

“reg:logistic” –逻辑回归。

“binary:logistic” –二分类的逻辑回归问题,输出为概率。

“binary:logitraw” –二分类的逻辑回归问题,输出的结果为wTx。

“count:poisson” –计数问题的poisson回归,输出结果为poisson分布。在poisson回归中,max_delta_step的缺省值为0.7。

“multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)

“multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。没行数据表示样本所属于每个类别的概率。

“rank:pairwise” –通过最小化成对损失对任务进行排序


3.eval_metric——评价指标[default=取决于objective参数的取值]

对于回归问题,默认值是rmse,对于分类问题,默认值是error。选项如下所示:

rmse(均方根误差)

mae(平均绝对误差)

logloss(负对数似然函数值)

error(二分类误差,阈值0.5)

merror(多分类错误率)

mlogloss(多分类logloss损失函数)

auc(曲线下面积)

“ndcg”:归一化贴现累积收益

“map”:平均精度


(二)通用参数


1.max_depth ——数的最大深度[default=6],取值范围为:[1,∞]

通过控制树的深度从而控制树模型的复杂程度,来减少过拟合分风险。max_depth越大,模型会学到更具体更局部的样本


2.min_child_weight ——子节点最小样本权重和[default=1],取值范围为: [0,∞]

最小样本权重的和;这个参数用于避免过拟合,当它的值较大时,可以避免模型学习到局部的特殊样本。但是如果这个值过高,会导致欠拟合。


3.subsample ——每个决策树所用的子样本占总样本的比例[default=1],取值范围为:(0,1]

用于训练模型的子样本占整个样本集合的比例。如果设置为0.5则意味着XGBoost将随机的从整个样本集合中随机的抽取出50%的子样本建立树模型,这能够防止过拟合。参数默认值是1,该参数控制的就是对于每棵树,随机采样的比例。减少这个参数的值,同样会使算法更加保守,避免过拟合,但是如果设置的过于小,可能会导致欠拟合。典型的取值范围[0.5-1.0]。


4.colsample_bytree——在建立树时对特征采样的比例 [default=1],取值范围:(0,1]

用来控制每棵随机采样的列数的占比(每一列是一个特征)。控制每棵树的特征抽取比例,减少过拟合的风险。参数默认值是1,典型的取值范围[0.5-1.0]。


5.colsample_bylevel——对列数的采样的占比 [default=1]

参数默认值是1,用来控制树的每一级的每一次分裂,对列数的采样的占比。


6.silent ——运行信息[default=0]

取0时表示打印出运行时信息,取1时表示以缄默方式运行,不打印运行时信息。


7.nthread——输入系统的核数[default=当前系统可获得的最大线程数]

XGBoost运行时的线程数。看到这个参数的第一反应就猜到是和多线程相关的,果不其然,该参数是用来控制应当输入系统的核数。如果不输入这个参数的话,算法自动检测会默认使用CPU的全部核。


8.base_score ——所有实例的初始预测分数,全局偏差[ default=0.5 ]


9.max_delta_step——每个树的权重最大增量 [default=0],取值范围为:[0,∞]

该参数限制的是每棵树权重改变的最大步长。如果该参数设置为0,则表示没有约束,如果其被赋予了某个正值,则会让算法更加保守。原文说该参数一般用不到,但是在样本不平衡的情况下,对逻辑回归很有帮助(有待测试)。但当类极不平衡时,它可能有助于逻辑回归。将其设置为1-10可能有助于控制更新。


10.num_pbuffer——预测缓冲区的大小

[由xgboost自动设置,无需用户设置],通常设置为训练实例的数量。缓冲器用于保存上一个升压步骤的预测结果。


11.num_feature——特征维数

[由xgboost自动设置,无需用户设置]特征个数


12.lambda——L2 正则的惩罚系数 [default=1]

这个参数是用来控制XGBoost的正则化部分的。在减少过拟合上可挖掘更多用处。参数默认值是1,权重的L2正则化项(类似于Ridge Regression),该参数是用来控制XGBoost中的正则化部分的,一般很少用,但是在减少过拟合方面,该参数应该还是能起到很大作用的。


13.alpha ——L1 正则的惩罚系数[default=0]

参数默认值是1,权重的L1正则化项(类似于Lasso Regression),原文说该参数能应用到很高维度的情况,可以让算法的速度更快(有待测试)。


14.lambda_bias——在偏置上的L2正则[default=0]**

在L1上没有偏置项的正则,因为L1时偏置不重要


15.seed——随机种子数 [ default=0 ]

随机数的种子,用于复现随机数据的结果,也可以用于调整参数。


16.tree_method——数算法[default=近似]

要使用精确的贪婪算法,需要将tree_method设置为“exact”


17.max-leaf-nodes——树上最大的节点或叶子数

直观解释就是:。用于避免决策树的过拟合。试想一颗深度为n的二叉树,其叶子节点数最多为n^2。


18.scale_pos_weight——缩放百分比权重[default=1]

参数默认值是1,该参数用于样本十分不平衡时,把该参数设置为一个正值,可以使算法很快收敛。


19.num_parallel_tree——并行树数量[default=1]


20.eta——收缩步长 [default=0.3],取值范围为:[0,1]

和learning rate类似,通过减小每一步的权重,可以提高模型的鲁棒性。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,防止过拟合,让后面有更大的学习空间。 eta通过缩减特征的权重使提升计算过程更加保守。实际应用中,一般把eta设置得小一点,典型的取值范围是[0.01-0.2]。


21.num_round–迭代次数,取值范围为:[1,+∞]

建立弱分类器数量(也即迭代次数),其数量越大,模型的学习能力就会越强。但是,较大num_round会造成过拟合,且增加到一定程度之后,模型达到上限,不会再增加准确率。


22.gamma——树结点分裂的最低要求 [default=0],取值范围为:[0,+∞]

在树的叶节点上进行进一步分区所需的最小损失减少。控制子树的复杂程度,减低模型复杂度(减少过拟合)这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关。参数默认值是0,我们都知道,XGBoost在分裂节点时都会看分裂后损失函数的增益,只有增益大于一个阈值,才会对节点进行分裂。该参数指定的就是那个阈值,该参数越大,则表示决策树越难进行分裂,也就意味着算法越保守。该参数和损失函数息息相关。


二、调参思路



调参思路来源:https://jiuaidu.com/it/2579833/


(一)详细版本


参数调优的一般方法。我们会使用和GBM中相似的方法。需要进行如下步骤:

选择较高的学习速率(learning rate)。一般情况下,学习速率的值为0.1。但是,对于不同的问题,理想的学习速率有时候会在0.05到0.3之间波动。选择对应于此学习速率的理想决策树数量。XGBoost有一个很有用的函数“cv”,这个函数可以在每一次迭代中使用交叉验证,并返回理想的决策树数量。

对于给定的学习速率和决策树数量,进行决策树特定参数调优(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在确定一棵树的过程中,我们可以选择不同的参数,待会儿我会举例说明。

xgboost的正则化参数的调优。(lambda, alpha)。这些参数可以降低模型的复杂度,从而提高模型的表现。

降低学习速率,确定理想参数。

第一步:确定学习速率和tree_based 参数调优的估计器数目。


为了确定boosting 参数,我们要先给其它参数一个初始值。咱们先按如下方法取值:

1、max_depth = 5 :这个参数的取值最好在3-10之间。我选的起始值为5,但是你也可以选择其它的值。起始值在4-6之间都是不错的选择。

2、min_child_weight = 1:在这里选了一个比较小的值,因为这是一个极不平衡的分类问题。因此,某些叶子节点下的值会比较小。

3、gamma = 0: 起始值也可以选其它比较小的值,在0.1到0.2之间就可以。这个参数后继也是要调整的。

4、subsample,colsample_bytree = 0.8: 这个是最常见的初始值了。典型值的范围在0.5-0.9之间。

5、scale_pos_weight = 1: 这个值是因为类别十分不平衡。

注意哦,上面这些参数的值只是一个初始的估计值,后继需要调优。这里把学习速率就设成默认的0.1。然后用xgboost中的cv函数来确定最佳的决策树数量。前文中的函数可以完成这个工作。

learning_rate =0.1,
 n_estimators=1000,
 max_depth=5,
 min_child_weight=1,
 gamma=0,
 subsample=0.8,
 colsample_bytree=0.8,
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27

从输出结果可以看出,在学习速率为0.1时,理想的决策树数目是140。这个数字对你而言可能比较高,当然这也取决于你的系统的性能。


注意:在AUC(test)这里你可以看到测试集的AUC值。但是如果你在自己的系统上运行这些命令,并不会出现这个值。因为数据并不公开。这里提供的值仅供参考。生成这个值的代码部分已经被删掉了。


第二步: max_depth 和 min_weight 参数调优


我们先对这两个参数调优,是因为它们对最终结果有很大的影响。首先,我们先大范围地粗调参数,然后再小范围地微调。

注意:在这一节我会进行高负荷的栅格搜索(grid search),这个过程大约需要15-30分钟甚至更久,具体取决于你系统的性能。你也可以根据自己系统的性能选择不同的值。

 'max_depth':range(3,10,2),
 'min_child_weight':range(1,6,2)
   learning_rate =0.1
    n_estimators=140,
    max_depth=5,
min_child_weight=1,
gamma=0,
subsample=0.8
colsample_bytree=0.8,
 objective= 'binary:logistic',
  nthread=4,  
     scale_pos_weight=1
      seed=27

至此,我们对于数值进行了较大跨度的12中不同的排列组合,可以看出理想的max_depth值为5,理想的min_child_weight值为5。在这个值附近我们可以再进一步调整,来找出理想值。我们把上下范围各拓展1,因为之前我们进行组合的时候,参数调整的步长是2。

'max_depth':[4,5,6],
 'min_child_weight':[4,5,6]
learning_rate=0.1,
n_estimators=140,
max_depth=5,
 min_child_weight=2, 
 gamma=0, 
 subsample=0.8, 
 colsample_bytree=0.8,
 objective= 'binary:logistic',
  nthread=4, 
  scale_pos_weight=1,
  seed=27

至此,我们得到max_depth的理想取值为4,min_child_weight的理想取值为6。同时,我们还能看到cv的得分有了小小一点提高。需要注意的一点是,随着模型表现的提升,进一步提升的难度是指数级上升的,尤其是你的表现已经接近完美的时候。当然啦,你会发现,虽然min_child_weight的理想取值是6,但是我们还没尝试过大于6的取值。像下面这样,就可以尝试其它值。

 'min_child_weight':[6,8,10,12]
 learning_rate=0.1,
 n_estimators=140,
 max_depth=4,
 min_child_weight=2, 
 gamma=0, 
 subsample=0.8,    
  colsample_bytree=0.8,
 objective= 'binary:logistic', 
 nthread=4,
  scale_pos_weight=1,
  seed=27

我们可以看出,6确确实实是理想的取值了。

第三步:gamma参数调优

在已经调整好其它参数的基础上,我们可以进行gamma参数的调优了。Gamma参数取值范围可以很大,我这里把取值范围设置为5了。你其实也可以取更精确的gamma值。

 'gamma':[i/10.0 for i in range(0,5)]
 learning_rate =0.1,
  n_estimators=140, 
  max_depth=4,
 min_child_weight=6, 
 gamma=0,
  subsample=0.8, 
  colsample_bytree=0.8,
 objective= 'binary:logistic', 
 nthread=4, 
 scale_pos_weight=1,
 seed=27

从这里可以看出来,我们在第一步调参时设置的初始gamma值就是比较合适的。也就是说,理想的gamma值为0。在这个过程开始之前,最好重新调整boosting回合,因为参数都有变化。

从这里可以看出,得分提高了。所以,最终得到的参数是:

 learning_rate =0.1,
 n_estimators=1000,
 max_depth=4,
 min_child_weight=6,
 gamma=0,
 subsample=0.8,
 colsample_bytree=0.8,
 objective= 'binary:logistic',
 nthread=4,
scale_pos_weight=1,
seed=27

第四步:调整subsample 和 colsample_bytree 参数

下一步是尝试不同的subsample 和 colsample_bytree 参数。我们分两个阶段来进行这个步骤。这两个步骤都取0.6,0.7,0.8,0.9作为起始值。

 'subsample':[i/10.0fori in range(6,10)],
 'colsample_bytree':[i/10.0fori in range(6,10)]
learning_rate =0.1, 
n_estimators=177, 
max_depth=3,
 min_child_weight=4,
  gamma=0.1, 
  subsample=0.8,
   colsample_bytree=0.8,
 objective= 'binary:logistic', 
 nthread=4, 
 scale_pos_weight=1,
 seed=27

从这里可以看出来,subsample 和 colsample_bytree 参数的理想取值都是0.8。现在,我们以0.05为步长,在这个值附近尝试取值。

 'subsample':[i/100.0fori in range(75,90,5)],
 'colsample_bytree':[i/100.0fori in range(75,90,5)]
learning_rate =0.1,
 n_estimators=177,
  max_depth=4,
 min_child_weight=6, 
 gamma=0, 
 subsample=0.8, 
 colsample_bytree=0.8,
 objective= 'binary:logistic', 
 nthread=4, 
 scale_pos_weight=1,
 seed=27

我们得到的理想取值还是原来的值。因此,最终的理想取值是:

subsample: 0.8
 colsample_bytree: 0.8

* 第五步:正则化参数调优。**

下一步是应用正则化来降低过拟合。由于gamma函数提供了一种更加有效地降低过拟合的方法,大部分人很少会用到这个参数。但是我们在这里也可以尝试用一下这个参数。我会在这里调整’reg_alpha’参数,然后’reg_lambda’参数留给你来完成。

 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100]
learning_rate =0.1, 
n_estimators=177, 
max_depth=4,
 min_child_weight=6, 
 gamma=0.1, 
 subsample=0.8, 
 colsample_bytree=0.8,
 objective= 'binary:logistic', 
 nthread=4, 
 scale_pos_weight=1,
 seed=27

我们可以看到,相比之前的结果,CV的得分甚至还降低了。但是我们之前使用的取值是十分粗糙的,我们在这里选取一个比较靠近理想值(0.01)的取值,来看看是否有更好的表现。

 'reg_alpha':[0, 0.001, 0.005, 0.01, 0.05]
learning_rate =0.1, 
n_estimators=177, 
max_depth=4,
 min_child_weight=6, 
 gamma=0.1, 
 subsample=0.8, 
 colsample_bytree=0.8,
 objective= 'binary:logistic',
  nthread=4,
   scale_pos_weight=1
   ,seed=27

可以看到,CV的得分提高了。现在,我们在模型中来使用正则化参数,来看看这个参数的影响。

learning_rate =0.1,
 n_estimators=1000,
 max_depth=4,
 min_child_weight=6,
 gamma=0,
 subsample=0.8,
 colsample_bytree=0.8,
 reg_alpha=0.005,
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27

然后我们发现性能有了小幅度提高。

第6步:降低学习速率

最后,我们使用较低的学习速率,以及使用更多的决策树。我们可以用XGBoost中的CV函数来进行这一步工作。

 learning_rate =0.01,
 n_estimators=5000,
 max_depth=4,
 min_child_weight=6,
 gamma=0,
 subsample=0.8,
 colsample_bytree=0.8,
 reg_alpha=0.005,
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27

(二)简化版本:


一般Xgboost调优的顺序可以参考如下:


确定一个较大的学习速率0.1

num_boost_round调优

max_depth 和 min_weight 参数调优

gamma参数调优

正则化参数调优

降低学习速率

第一步:关于num_boost_round的调优,一般有两种可选的方法:


首先将num_boost_round设的足够大,然后在运行的过程中我们看训练集和测试集的auc变化,一般来说训练集上面的auc会一直增加,但是测试集上面的auc会随着num_boost_round增大因为过拟合而下降,这样我们就会在训练过程中找到测试集的一个峰值,一旦找到,我们就可以结束训练了。


第二步:max_depth 和 min_weight 参数调优


先对这两个参数调优,是因为它们对最终结果有很大的影响。首先,我们先大范围地粗调参数,然后再小范围地微调。


第三步:gamma参数调优


第四步:调整subsample 和 colsample_bytree 参数


下一步是尝试不同的subsample 和 colsample_bytree 参数。我们分两个阶段来进行这个步骤。这两个步骤都取0.6,0.7,0.8,0.9作为起始值。


第五步:正则化参数调优


下一步是应用正则化来降低过拟合。由于gamma函数提供了一种更加有效地降低过拟合的方法,大部分人很少会用到这个参数。但是我们在这里也可以尝试用一下这个参数。


至此,你可以看到模型的表现有了大幅提升,调整每个参数带来的影响也更加清楚了。


三、总结


1、仅仅靠参数的调整和模型的小幅优化,想要让模型的表现有个大幅度提升是不可能的。GBM的最高得分是0.8487,XGBoost的最高得分是0.8494。确实是有一定的提升,但是没有达到质的飞跃。

2、要想让模型的表现有一个质的飞跃,需要依靠其他的手段,诸如,特征工程(feature egineering) ,模型组合(ensemble of model),以及堆叠(stacking)等。


相关文章
|
21天前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
52 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
18天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
39 20
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
27天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
51 16
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
138 13
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
194 15
|
1月前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
258 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码