非极大值抑制(NMS)

简介: 目标检测任务中提高准确度的方法之一

非极大值抑制技术,也成为nms。

思路如下:

  1. 选取这类box中scores最大的哪一个,记为box_best,并保留它
  2. 计算box_best与其余的box的IOU
  3. 如果其IOU>0.5了,那么就舍弃这个box(由于可能这两个box表示同一目标,所以保留分数高的哪一个)
  4. 从最后剩余的boxes中,再找出最大scores的哪一个,如此循环往复

11.png

相关文章
|
8月前
|
算法 计算机视觉
YOLOv3 的非极大值抑制(NMS)算法是如何工作的,它对最终检测结果有何影响?
YOLOv3 的非极大值抑制(NMS)算法是如何工作的,它对最终检测结果有何影响?
|
5月前
|
机器学习/深度学习 文字识别 算法
OCR -- 非极大值抑制(NMS)算法详解
OCR -- 非极大值抑制(NMS)算法详解
151 0
OCR -- 非极大值抑制(NMS)算法详解
|
6月前
|
计算机视觉
【YOLOv10改进-损失函数】Shape-IoU:考虑边框形状与尺度的指标
YOLO目标检测专栏探讨了边框回归损失的创新方法,强调了目标形状和尺度对结果的影响。提出的新方法Shape-IoU关注边框自身属性,通过聚焦形状和尺度提高回归精度。实验显示,该方法提升了检测效果,超越现有技术,在多个任务中达到SOTA。论文和代码已公开。
|
算法 计算机视觉
非极大值抑制详细原理(NMS含代码及详细注释)
非极大值抑制(Non-Maximum Suppression,NMS)详细原理(含代码及详细注释)
1724 1
非极大值抑制详细原理(NMS含代码及详细注释)
|
算法 数据库 计算机视觉
舌象图片自适应调节——gamma校正算法(五)
舌象图片自适应调节——gamma校正算法(五)
321 0
|
人工智能
求矩阵的局部极大值
求矩阵的局部极大值
134 0
基于偏差校正似然的贝叶斯参数估计
基于偏差校正似然的贝叶斯参数估计
168 0
基于偏差校正似然的贝叶斯参数估计
|
机器学习/深度学习 传感器 算法
基于像素级图像融合的评价指标,包括均方误差,信噪比,熵附matlab代码
基于像素级图像融合的评价指标,包括均方误差,信噪比,熵附matlab代码
|
并行计算 算法 计算机视觉
目标检测的Tricks | 【Trick9】nms非极大值抑制处理(包括变体merge-nms、and-nms、soft-nms、diou-nms等介绍)
目标检测的Tricks | 【Trick9】nms非极大值抑制处理(包括变体merge-nms、and-nms、soft-nms、diou-nms等介绍)
1084 0
目标检测的Tricks | 【Trick9】nms非极大值抑制处理(包括变体merge-nms、and-nms、soft-nms、diou-nms等介绍)