Python应用专题 | 19:获取list中Top K个值对应的索引

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 如何获取list中Top K个值对应的索引?

背景

在得到概率分布的list之后,想要得到 Top K个概率值及其索引,因为索引对应着label id。

方法

    import numpy as np
    p = [0.07, 0.2, 0.1, 0.03, 0.1, 0.5]
    topk = 2
    print("方法1:")
    index_list = sorted(range(len(p)), key=lambda i: p[i])[-topk:] # sorted(range(len(p)), key=lambda i: p[i], reverse=True)[:2]
    pro_list = np.array(p)[index_list]
    print("indexs={}".format(index_list))
    print("pro values={}".format(pro_list))

    import numpy as np
    ind = np.argpartition(p, -topk)[-topk:] # 返回结果是 array
    print("方法2:")
    print("indexs={}".format(ind.tolist()))
    # preds_ind = p[ind]
    # print(preds_ind)

    # 方法3:
    print("方法3:")
    inds = np.argsort(p)[-topk:]
    print("indexs={}".format(inds.tolist()))

运行结果:

方法1:
indexs=[1, 5]
pro values=[0.2 0.5]
方法2:
indexs=[1, 5]
方法3:
indexs=[1, 5]
相关文章
|
4天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
28 6
|
5天前
|
数据采集 数据安全/隐私保护 开发者
非阻塞 I/O:异步编程提升 Python 应用速度
非阻塞 I/O:异步编程提升 Python 应用速度
|
13天前
|
机器学习/深度学习 数据可视化 数据处理
从基础到进阶:探索Python在数据科学中的应用
【10月更文挑战第18天】从基础到进阶:探索Python在数据科学中的应用
31 1
|
19天前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
56 2
11种经典时间序列预测方法:理论、Python实现与应用
|
20天前
|
测试技术 开发者 Python
在 Python 中创建列表时,应该写 `[]` 还是 `list()`?
在 Python 中,创建列表有两种方法:使用方括号 `[]` 和调用 `list()` 函数。虽然两者都能创建空列表,但 `[]` 更简洁、高效。性能测试显示,`[]` 的创建速度比 `list()` 快约一倍。此外,`list()` 可以接受一个可迭代对象作为参数并将其转换为列表,而 `[]` 则需要逐一列举元素。综上,`[]` 适合创建空列表,`list()` 适合转换可迭代对象。
在 Python 中创建列表时,应该写 `[]` 还是 `list()`?
|
5天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
31 7
|
5天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
21 4
|
6天前
|
机器学习/深度学习 数据可视化 数据处理
Python在数据科学中的应用###
本文探讨了Python语言在数据科学领域的广泛应用及其重要性。通过分析Python的简洁语法、强大的库支持和跨平台特性,阐述了为何Python成为数据科学家的首选工具。文章还介绍了Python在数据处理、分析和可视化方面的具体应用实例,展示了其在提升工作效率和推动科学研究方面的巨大潜力。最后,讨论了未来Python在数据科学领域的发展趋势和挑战。 ###
|
11天前
|
Python
python的时间操作time-应用
【10月更文挑战第20天】 python模块time的函数使用。
35 7
|
19天前
|
监控 Kubernetes Python
Python 应用可观测重磅上线:解决 LLM 应用落地的“最后一公里”问题
为增强对 Python 应用,特别是 Python LLM 应用的可观测性,阿里云推出了 Python 探针,旨在解决 LLM 应用落地难、难落地等问题。助力企业落地 LLM。本文将从阿里云 Python 探针的接入步骤、产品能力、兼容性等方面展开介绍。并提供一个简单的 LLM 应用例子,方便测试。
113 11