本文是我最近学习异步以及事件循环的一个总结
同步和异步
同步
- 指在 主线程上排队执行的任务,只有前一个任务执行完毕,才能继续执行下一个任务。
- 也就是调用一旦开始,必须这个调用 返回结果(划重点——)才能继续往后执行。程序的执行顺序和任务排列顺序是一致的。
异步
- 异步任务是指不进入主线程,而进入 任务队列的任务,只有任务队列通知主线程,某个异步任务可以执行了,该任务才会进入主线程。
- 每一个任务有一个或多个 回调函数。前一个任务结束后,不是执行后一个任务,而是执行回调函数,后一个任务则是不等前一个任务结束就执行。
- 程序的执行顺序和任务的排列顺序是不一致的,异步的。
- 我们常用的setTimeout和setInterval函数,Ajax都是异步操作。
何为异步?
代码在执行过程中,会遇到一些无法立即处理的任务,比如:
- 计时完成后需要执行的任务 ——
setTimeout
、setInterval
- 网络通信完成后需要执行的任务 --
XHR
、Fetch
- 用户操作后需要执行的任务 --
addEventListener
如果让渲染主线程等待这些任务的时机达到,就会导致主线程长期处于「阻塞」的状态,从而导致浏览器「卡死」
渲染主线程承担着极其重要的工作,无论如何都不能阻塞!
因此,浏览器选择异步来解决这个问题
使用异步的方式,渲染主线程永不阻塞
面试题:如何理解 JS 的异步?
JS是一门单线程的语言,这是因为它运行在浏览器的渲染主线程中,而渲染主线程只有一个。
而渲染主线程承担着诸多的工作,渲染页面、执行 JS 都在其中运行。
如果使用同步的方式,就极有可能导致主线程产生阻塞,从而导致消息队列中的很多其他任务无法得到执行。这样一来,一方面会导致繁忙的主线程白白的消耗时间,另一方面导致页面无法及时更新,给用户造成卡死现象。
所以浏览器采用异步的方式来避免。具体做法是当某些任务发生时,比如计时器、网络、事件监听,主线程将任务交给其他线程去处理,自身立即结束任务的执行,转而执行后续代码。当其他线程完成时,将事先传递的回调函数包装成任务,加入到消息队列的末尾排队,等待主线程调度执行。
在这种异步模式下,浏览器永不阻塞,从而最大限度的保证了单线程的流畅运行。
任务有优先级吗?
任务没有优先级,在消息队列中先进先出
但消息队列是有优先级的
根据 W3C 的最新解释:
- 每个任务都有一个任务类型,同一个类型的任务必须在一个队列,不同类型的任务可以分属于不同的队列。 在一次事件循环中,浏览器可以根据实际情况从不同的队列中取出任务执行。
- 浏览器必须准备好一个微队列,微队列中的任务优先所有其他任务执行 html.spec.whatwg.org/multipage/w…
随着浏览器的复杂度急剧提升,W3C 不再使用宏队列的说法
在目前 chrome 的实现中,至少包含了下面的队列:
- 延时队列:用于存放计时器到达后的回调任务,优先级「中」
- 交互队列:用于存放用户操作后产生的事件处理任务,优先级「高」
- 微队列:用户存放需要最快执行的任务,优先级「最高」
添加任务到微队列的主要方式主要是使用 Promise、MutationObserver
例如:
// 立即把一个函数添加到微队列 Promise.resolve().then(函数)
浏览器还有很多其他的队列,由于和我们开发关系不大,不作考虑
JavaScript 程序总是至少分为两个块:第一块现在运行;下一块将来运行,以响应某个事件。尽管程序是一块一块执行的,但是所有这些块共享对程序作用域和状态的访问,所以对状态的修改都是在之前累积的修改之上进行的。
一旦有事件需要运行,事件循环就会运行,直到队列清空。事件循环的每一轮称为一个tick。用户交互、IO 和定时器会向事件队列中加入事件任意时刻,一次只能从队列中处理一个事件。执行事件的时候,可能直接或间接地引发一个或多个后续事件。
并发是指两个或多个事件链随时间发展交替执行,以至于从更高的层次来看,就像是同时在运行(尽管在任意时刻只处理一个事件)。
通常需要对这些并发执行的“进程”(有别于操作系统中的进程概念)进行某种形式的交互协调,比如需要确保执行顺序或者需要防止竞态出现。这些“进程”也可以通过把自身分割为更小的块,以便其他“进程”插入进来。
ok讲了那么多,都是一些概念,不如先来看道面试题。
console.log('1'); setTimeout(function () { console.log('2'); process.nextTick(function () { console.log('3'); }) new Promise(function (resolve) { console.log('4'); resolve(); }).then(function () { console.log('5') }) }) process.nextTick(function () { console.log('6'); }) new Promise(function (resolve) { console.log('7'); resolve(); }).then(function () { console.log('8') }) setTimeout(function () { console.log('9'); process.nextTick(function () { console.log('10'); }) new Promise(function (resolve) { console.log('11'); resolve(); }).then(function () { console.log('12') }) })
第一轮事件循环流程分析如下:
- 整体script作为第一个宏任务进入主线程,遇到
console.log
,输出1。 - 遇到
setTimeout
,其回调函数被分发到宏任务Event Queue中。我们暂且记为setTimeout1
。 - 遇到
process.nextTick()
,其回调函数被分发到微任务Event Queue中。我们记为process1
。 - 遇到
Promise
,new Promise
直接执行,输出7。then
被分发到微任务Event Queue中。我们记为then1
。 - 又遇到了
setTimeout
,其回调函数被分发到宏任务Event Queue中,我们记为setTimeout2
。
宏任务Event Queue | 微任务Event Queue |
setTimeout1 | process1 |
setTimeout2 | then1 |
- 上表是第一轮事件循环宏任务结束时各Event Queue的情况,此时已经输出了1和7。
- 我们发现了
process1
和then1
两个微任务。 - 执行
process1
,输出6。 - 执行
then1
,输出8。
好了,第一轮事件循环正式结束,这一轮的结果是输出1,7,6,8。那么第二轮时间循环从setTimeout1
宏任务开始:
- 首先输出2。接下来遇到了
process.nextTick()
,同样将其分发到微任务Event Queue中,记为process2
。new Promise
立即执行输出4,then
也分发到微任务Event Queue中,记为then2
。
宏任务Event Queue | 微任务Event Queue |
setTimeout2 | process2 |
then2 |
- 第二轮事件循环宏任务结束,我们发现有
process2
和then2
两个微任务可以执行。 - 输出3。
- 输出5。
- 第二轮事件循环结束,第二轮输出2,4,3,5。
- 第三轮事件循环开始,此时只剩setTimeout2了,执行。
- 直接输出9。
- 将
process.nextTick()
分发到微任务Event Queue中。记为process3
。 - 直接执行
new Promise
,输出11。 - 将
then
分发到微任务Event Queue中,记为then3
。
宏任务Event Queue | 微任务Event Queue |
process3 | |
then3 |
- 第三轮事件循环宏任务执行结束,执行两个微任务
process3
和then3
。 - 输出10。
- 输出12。
- 第三轮事件循环结束,第三轮输出9,11,10,12。
整段代码,共进行了三次事件循环,完整的输出为1,7,6,8,2,4,3,5,9,11,10,12。 (请注意,node环境下的事件监听依赖libuv与前端环境不完全相同,输出顺序可能会有误差)
// 今日头条面试题 async function async1() { console.log('async1 start') //2 await async2() console.log('async1 end') //放入微任务队列 6 } async function async2() { console.log('async2') //3 } console.log('script start') //1 setTimeout(function () { //放入宏任务队列 8 console.log('settimeout') }) async1() // new Promise(function (resolve) { console.log('promise1') //4 resolve() }).then(function () { console.log('promise2') //放入微任务队列 7 }) console.log('script end') //5
题目的本质,就是考察setTimeout、promise、async await的实现及执行顺序,以及 JS 的事件循环的相关问题。
答案:
script start async1 start async2 promise1 script end async1 end promise2 settimeout
解析:步骤分析:执行顺序
- 首先,事件循环从宏任务(macrostack)队列开始,这个时候,宏任务(整体script、setTimeout、setInterval)队列中,只有一个 script (整体代码)任务 ()。
- 首先执行 console.log('script start'),输出 ‘script start'
- 遇到 setTimeout 把 console.log('setTimeout') 放到 macrotask 队列中
- 执行 aync1() 输出 ‘async1 start' 和 'async2' ,把 console.log('async1 end') 放到 micro 队列中 执行到 promise ,输出 'promise1' ,把 console.log('promise2') 放到 micro 队列中
- 执行 console.log('script end'),输出 ‘script end'
- macrotask 执行完成会执行 microtask ,把 microtask quene 里面的 microtask 全部拿出来一次性执行完,所以会输出 'async1 end' 和 ‘promise2'
- 开始新一轮的事件循环,去除执行一个 macrotask 执行,所以会输出 ‘setTimeout'
面试题:阐述一下 JS 的事件循环
参考答案:
事件循环又叫做消息循环,是浏览器渲染主线程的工作方式。
在 Chrome 的源码中,它开启一个不会结束的 for 循环,每次循环从消息队列中取出第一个任务执行,而其他线程只需要在合适的时候将任务加入到队列末尾即可。
过去把消息队列简单分为宏队列和微队列,这种说法目前已无法满足复杂的浏览器环境,取而代之的是一种更加灵活多变的处理方式。
根据 W3C 官方的解释,每个任务有不同的类型,同类型的任务必须在同一个队列,不同的任务可以属于不同的队列。不同任务队列有不同的优先级,在一次事件循环中,由浏览器自行决定取哪一个队列的任务。但浏览器必须有一个微队列,微队列的任务一定具有最高的优先级,必须优先调度执行。
面试题:JS 中的计时器能做到精确计时吗?为什么?
参考答案:
不行,因为:
- 计算机硬件没有原子钟,无法做到精确计时
- 操作系统的计时函数本身就有少量偏差,由于 JS 的计时器最终调用的是操作系统的函数,也就携带了这些偏差
- 按照 W3C 的标准,浏览器实现计时器时,如果嵌套层级超过 5 层,则会带有 4 毫秒的最少时间,这样在计时时间少于 4 毫秒时又带来了偏差
- 受事件循环的影响,计时器的回调函数只能在主线程空闲时运行,因此又带来了偏差