MATLAB实现人脸识别

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 本篇博文基于MATLAB实现人脸识别,基于几何特征的算法,对人脸从图像采集、预处理、到特征点定位提取,校验通过;主要利用YCbCr肤色模型,通过连通分量提取算法定位人脸;对RGB图像通过形态学图像处理算法选定区域,再进行细化算法,找到其人脸坐标并提取出来;然后利用PCA与特征脸算法计算特征值完成识别。

本篇博文基于MATLAB实现人脸识别,基于几何特征的算法,对人脸从图像采集、预处理、到特征点定位提取,校验通过;主要利用YCbCr肤色模型,通过连通分量提取算法定位人脸;对RGB图像通过形态学图像处理算法选定区域,再进行细化算法,找到其人脸坐标并提取出来;然后利用PCA与特征脸算法计算特征值完成识别。


拓展学习:https://download.csdn.net/download/m0_38106923/87720473


项目资源下载请参见:MATLAB实现人脸识别【图像处理实战】

https://download.csdn.net/download/m0_38106923/87768050

实现步骤如下所示:


1)将训练集的每一个人脸图像都拉长一列,将他们组合在一起形成一个大矩阵A。假设每个人脸图像是MxM大小,那么拉成一列后每个人脸样本的维度就是d=M*N大小了。假设有N个人脸图像,那么样本矩阵A的维度就是d*N了。


2)将所有的N个人脸在对应维度上加起来,然后求个平均,就得到了一个“平均脸”。


3)将N个图像都减去那个平均脸图像,得到差值图像的数据矩阵Φ。


4)计算协方差矩阵C=ΦΦT。再对其进行特征值分解。就可以得到想要的特征向量(特征脸)了。


5)将训练集图像和测试集的图像都投影到这些特征向量上了,再对测试集的每个图像找到训练集中的最近邻或者k近邻啥的,进行分类即可。


对于步骤4,涉及到求特征值分解。如果人脸的特征维度d很大,例如256*256的人脸图像,d就是65536了。那么协方差矩阵C的维度就是d*d=65536x65536。对这个大矩阵求解特征值分解如果N不大的话,可以通过求解C’=ΦTΦ矩阵来获得同样的特征向量,计算相似性用的是欧氏距离。


打开示例程序,可选择静态图像识别或实时识别模式,如下图所示:


1e60ad716a854cde8a2bb579e02bb636.png


初次运行需要保存人脸数据到数据库,否则会弹出警告对话框,状态栏显示提示信息,如下图所示:


f5dd0ee17ecb48e39008d8f86b50fb69.png


选择实时识别或静态图像识别,以静态图像为例打开采集到的人脸图像,保存到数据库即可进行识别。


实时模式下,在左侧相机栏和格式栏,选择相机及分辨率,如下图所示:


f932e6757c3d4c118e1431fecbb22fc0.png


开始采集人脸图像,如下图所示:


d76957e1216a4f739daede17a0da9a69.png


点击抓拍保存人脸图像,将权限勾选框点选,并在文本输入框中输入名字,并点击保存,将人脸数据保存到数据库。此时左侧状态栏会显示保存的信息,如下图所示:


3879d2a9e47a464a8bd97bd8d75479dd.png


点击返回到识别页面,再次点击开始采集按钮,抓拍人脸图像,进行识别,结果如下图所示:


343c8651b1094c758bb60890176683f4.png


当数据库中有多个人脸数据时,会根据匹配准确率进行排序,点击上一条/下一条脸部数据匹配按钮可查看匹配准确率。如下图所示:


80d84bb185c94ca6b0ef9f07ccbf980e.png


拓展学习:https://download.csdn.net/download/m0_38106923/87720473

————————————————

版权声明:本文为CSDN博主「不脱发的程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/m0_38106923/article/details/130565752

相关文章
|
7月前
|
机器学习/深度学习 监控 算法
m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面
m基于深度学习网络的活体人脸和视频人脸识别系统matlab仿真,带GUI界面
98 0
|
7月前
|
机器学习/深度学习 数据采集 人工智能
基于深度学习的活体人脸识别检测算法matlab仿真
基于深度学习的活体人脸识别检测算法matlab仿真
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
7月前
|
算法 计算机视觉 异构计算
基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。
|
机器学习/深度学习 数据采集 算法
基于AutoEncoder自编码器的人脸识别matlab仿真
基于AutoEncoder自编码器的人脸识别matlab仿真
|
7月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2网络的人脸识别系统matlab仿真,包括识别正脸,侧脸等
基于yolov2网络的人脸识别系统matlab仿真,包括识别正脸,侧脸等
|
机器学习/深度学习 数据采集 算法
基于Alexnet深度学习网络的人脸识别算法matlab仿真
基于Alexnet深度学习网络的人脸识别算法matlab仿真
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章