动态内存管理——C语言【进阶】(下)

简介: 动态内存管理——C语言【进阶】(下)

1.几个经典的笔试题

题目1:

void GetMemory(char* p)
{
  p = (char*)malloc(100);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(str);
  strcpy(str, "hello world");
  printf(str);
}
int main()
{
  Test();
  return 0;
}


请问运行Test 函数会有什么样的结果?

答:没有打印结果


题目解释: 先调用Test函数,Test函数把str指针里边放成了空指针,再调用GetMemory函数,把str变量本身传给p,p为str的一份临时拷贝,p里边也是空指针。

malloc向内存申请了100个字节的空间,并把空间的地址传给了p

假设地址为0x0012ff40,那么p里边存放的也是0x0012ff40,所以p就指向了那100个空间

p为函数的形参变量,出了函数就会销毁,所以当p走出GetMemory函数,p里边的数据就不见了,p就销毁了

所以再Test函数里str依然是一个空指针,strcpy函数把hello world拷贝放在str这个空指针里必然会出现访问内存出错


总结:

这个代码的两个错误


1.调用GetMemory国数的时候,str的传参为值传递,p是str的临时 拷贝,所以在GetMemory函数内部讲动态开辟空间的地址存放在p中的时候,不会影响str.所以GetMemory函数返回之后,str中依然是 NULL指针。strcpy函数就会调用失败,原因是对NULL的解引用操作,程序会崩溃。

2.GetMemory函数内容malloc申请的空间没有机会释放,造成了内存泄露。

如何修改呢?

把Test函数内部的p的值返回一下,并在GetMemory函数内部对其接收,拷贝完之后再对其打印一下,结果就出来了


修改后代码:

char* GetMemory(char* p)
{
  p = (char*)malloc(100);
  return p;
}
void Test(void)
{
  char* str = NULL;
  str=GetMemory(str);
  strcpy(str, "hello world");
  printf(str);
  free(str);
  str = NULL;
}
int main()
{
  Test();
  return 0;
}

打印结果:


另一种修改方法:传str地址

char* GetMemory(char** p)
{
  *p = (char*)malloc(100);
  return p;
}
void Test(void)
{
  char* str = NULL;
    GetMemory(&str);
  strcpy(str, "hello world");
  printf(str);
  free(str);
  str = NULL;
}
int main()
{
  Test();
  return 0;
}


题目2:

char* GetMemory(void)
{
  char p[] = "hello world";
  return p;
}
void Test(void)
{
  char* str = NULL;
  str = GetMemory();
  printf(str);
}
int main()
{
  Test();
  return 0;
}

请问运行Test 函数会有什么样的结果?


题目分析:先调用Test函数,Test函数把str指针里边放成了空指针,再调用GetMemory函数,GetMemory中创建了一个p数组,数组中放了hello world

return返回了p的地址,返回后str里放的就是p的地址

p的空间属于GetMemory函数,出了这个函数p的空间就会被回收

总结:

这个代码的错误:

返回栈空间地址的问题

GetMemory函数内部创建的数组是临时的,虽然返回了数组的起始地址给了str,但是数组的内存出了GetMemory函数就被回收了,而str依然保存了数组的起始地址,这时如果使用str, str就是野指针。


题目3:

void GetMemory(char **p,int num)
{
  *p = (char*)malloc(num);
}
void Test(void)
{
  char* str = NULL;
    GetMemory(&str,100);
  strcpy(str, "hello");
  printf(str);
}
int main()
{
  Test();
  return 0;
}


运行Test函数会有什么结果

仔细观察这个代码与我们的题目一有点相似,但是这个代码没有free,因为没有free所以造成了内存泄漏,所以我们给他加上free就好了

修改后:


void GetMemory(char** p, int num)
{
  *p = (char*)malloc(num);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(&str, 100);
  strcpy(str, "hello");
  printf(str);
  //释放
  free(str);
}
int main()
{
  Test();
  return 0;
}


运行结果:

题目4:

void Test(void)
{
  char* str = (char*)malloc(100);
  strcpy(str, "hello");
  free(str);
  if (str != NULL)
  {
    strcpy(str, "world");
    printf(str);
  }
}
int main()
{
  Test();
  return 0;
}


请问运行Test函数会有什么结果?

这个代码确实打印出了结果,但是它还是有问题的,在这段代码中,执行到free(str)的时候,str指向的空间已经被回收了,所以后面的if语句中的strcpy函数,一旦执行就是非法访问

2.C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1.栈区 (stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 東时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。

2.堆区 (heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分 配方式类似于链表。

3.数据段(静态区) (static) 存放全局变量、静态数据。程序结束后由系统释放。

4.代码段:存放函数体 (类成员函数和全局丽数)的二进制代码。


有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。


实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。但是被static修饰的变量存放在数据段

(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁 所以生命周期变长。


3. 柔性数组

也许你从来没有听说过柔性数组 (flexible array) 这个概念,但是它确实是存在的。 C99

中,结构中的最后一个元素允许是未知大小的数组,这就叫做【柔性数组】成员。

例如:

struct S
{
  int n;
  int a[0];//柔性数组成员
};


有些编译器中会报错,改成

struct S
{
  int n;
  int a[];//柔性数组成员
};


3.1 柔性数组的特点:

  • 结构中的柔性数组成员前面必须至少一个其他成员。
  • sizeof 返回的这种结构大小不包括柔性数组的内存。
  • 包含柔性数组成员的结构用malloc 0函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小。

例如:

typedef struct st_type
{
  int i;
  int a[0];//柔性数组成员
}type_a;
int main()
{
  printf("%d\n", sizeof(type_a));//输出的是4
  return 0;
}


3.2 柔性数组的使用

//代码1
struct S
{
  int n;
  char c;
  int arr[0];//柔性数组成员
};
int main()
{
  //      8               + 40
  struct S* ps = (struct S*)malloc(sizeof(struct S) + 10*sizeof(int));
  if (ps == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }
  //使用
  ps->n = 100;
  ps->c = 'w';
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    ps->arr[i] = i;
  }
  for (i = 0; i < 10; i++)
  {
    printf("%d\n", ps->arr[i]);
  }
  //调整arr数组的大小
  struct S* ptr = (struct S*)realloc(ps, sizeof(struct S) + 20 * sizeof(int));
  if (ptr == NULL)
  {
    printf("%s\n", strerror(errno));
    return 1;
  }
  else
  {
    ps = ptr;
  }
  //使用
  //...
  //释放
  free(ps);
  ps = NULL;
  return 0;
}


柔性数组arr相当于获得了10个空间,修改后获得了2个空间

3.3 柔性数组的优势

上述的结构体也可以设计为:

//代码2
struct S
{
  int n;
  char c;
  int* arr;
};
int main()
{
  struct S* ps = (struct S*)malloc(sizeof(struct S));
  if (ps == NULL)
  {
    perror("malloc");
    return 1;
  }
  int*ptr = (int*)malloc(10 * sizeof(int));
  if (ptr == NULL)
  {
    perror("malloc2");
    return 1;
  }
  else
  {
    ps->arr = ptr;
  }
  //使用
  ps->n = 100;
  ps->c = 'w';
  int i = 0;
  for (i = 0; i < 10; i++)
  {
    ps->arr[i] = i;
  }
  //打印
  for (i = 0; i < 10; i++)
  {
    printf("%d ", ps->arr[i]);
  }
  //扩容 - 调整arr的大小
  ptr = realloc(ps->arr, 20 * sizeof(int));
  if (ptr == NULL)
  {
    perror("realloc");
    return 1;
  }
  else
  {
    ps->arr = ptr;
  }
  //使用
  //释放
  free(ps->arr);
  ps->arr = NULL;
  free(ps);
  ps = NULL;
  return 0;
}

上述 代码1和 代码2可以完成同样的功能,代码1是柔性数组方案,代码2是结构体中指针方案

两种方法对比:


代码1:malloc一次free一次,容易维护空间,不易出错

( malloc次数少,内存碎片就较少,内存的使用率就较高一些)

代码2:malloc两次free两次,维护难度加大,容易出错

(malloc次数多,内存碎片就增多,内存的使用率就下降)


柔性数组的好处

第一个好处是:方便内存释放


如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体,但是用户并不知道这个结构体内的成员也需要free,所以你不能指望用户来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存一次性分配好了,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。


第二个好处是:这样有利于访问速度.


连续的内存有益于提高访问速度,也有益于减少内存碎片。(其实,我个人觉得速度的差异比较小)


好了关于C语言【进阶】,七七今天就分享到这里了,如果这篇文章对大家有帮助,请佬佬们点个赞再走吧!如果发现什么问题,欢迎评论区留言!💕💕


目录
相关文章
|
3月前
|
C语言
【C语言】:总结动态内存的常见错误
【C语言】:总结动态内存的常见错误
24 0
|
3月前
|
C语言
【C语言】:动态内存管理函数malloc,calloc,realloc和free的介绍的介绍
【C语言】:动态内存管理函数malloc,calloc,realloc和free的介绍的介绍
46 0
|
16天前
|
存储 大数据 C语言
C语言 内存管理
本文详细介绍了内存管理和相关操作函数。首先讲解了进程与程序的区别及进程空间的概念,接着深入探讨了栈内存和堆内存的特点、大小及其管理方法。在堆内存部分,具体分析了 `malloc()`、`calloc()`、`realloc()` 和 `free()` 等函数的功能和用法。最后介绍了 `memcpy`、`memmove`、`memcmp`、`memchr` 和 `memset` 等内存操作函数,并提供了示例代码。通过这些内容,读者可以全面了解内存管理的基本原理和实践技巧。
|
16天前
|
缓存 Linux C语言
C语言 多进程编程(六)共享内存
本文介绍了Linux系统下的多进程通信机制——共享内存的使用方法。首先详细讲解了如何通过`shmget()`函数创建共享内存,并提供了示例代码。接着介绍了如何利用`shmctl()`函数删除共享内存。随后,文章解释了共享内存映射的概念及其实现方法,包括使用`shmat()`函数进行映射以及使用`shmdt()`函数解除映射,并给出了相应的示例代码。最后,展示了如何在共享内存中读写数据的具体操作流程。
|
1月前
|
存储 程序员 C语言
【C语言】动态内存管理
【C语言】动态内存管理
|
1月前
|
存储 编译器 C语言
C++内存管理(区别C语言)深度对比
C++内存管理(区别C语言)深度对比
60 5
|
1月前
|
C语言
C语言动态内存管理
C语言动态内存管理
27 4
|
28天前
|
存储 NoSQL 程序员
C语言中的内存布局
C语言中的内存布局
29 0
|
1月前
|
C语言
【C语言篇】字符和字符串以及内存函数详细介绍与模拟实现(下篇)
perror函数打印完参数部分的字符串后,再打印⼀个冒号和⼀个空格,再打印错误信息。
|
1月前
|
存储 安全 编译器
【C语言篇】字符和字符串以及内存函数的详细介绍与模拟实现(上篇)
当然可以用scanf和printf输入输出,这里在之前【C语言篇】scanf和printf万字超详细介绍(基本加拓展用法)已经讲过了,这里就不再赘述,主要介绍只针对字符的函数.

热门文章

最新文章