【收藏】5W+条海内外网络数据分析得出首份《顶级数据团队建设全景报告》,直击数据团队建设现状及问题

简介: 7月11日,云栖社区技术联盟伙伴——大数据文摘联合清华数据科学研究院重磅发布首份《顶级数据团队建设全景报告》,《报告》发现,目前,尽管部分组织的决策者已经具备了数据驱动意识,但数据价值真正落地仍然艰难。
我的公司是否需要独立的数据团队? 我该何时、怎么样建设自己的数据团队? 数据团队的价值如何衡量? 针对这些业内普遍存在的数据团队建设问题,7月11日,云栖社区技术联盟伙伴——大数据文摘联合清华数据科学研究院重磅发布首份《顶级数据团队建设全景报告》(下称《报告》)。

历时3个月的调研,《报告》囊括50,000+条海内外网络数据分析、1,000+份调查问卷内容,和10位海内外业界大咖深度访谈内容,针对“数据团队建设现状”和“数据团队建设要素”两大内容,致力于回答数据团队建设现状和数据团队发展问题,力求为行业内数据团队的组建和高校数据人才的培养提供指导性意见。 

《报告》发现,目前,尽管部分组织的决策者已经具备了数据驱动意识,但数据价值真正落地仍然艰难。只有某些信息化程度高的行业,如互联网、金融等,配备有完整的数据团队,多数信息化程度偏低的行业仍然处于数据团队建设的初级阶段,数据团队“做什么”、“怎么做”等问题仍不清晰。  

在工作内容方面,现阶段的数据团队除了要承担数据驱动决策、数据驱动业务的工作外,往往还承担着产品优化、技术研发等工作。建设目标不清晰、业务界限模糊、人才缺乏等问题是这些团队面临的普遍困扰,在被调研的多数组织或机构中,数据团队做出的决策无法充分、高效实现。一定程度上反映出数据团队和业务部门的脱节。 但是长远来看,数据团队依然具有非常广阔的发展前景,业内数据人才需求巨大。 

行业间数据团队建设存在差异:互联网金融行业领跑
现阶段,拥有数据团队比例最高的是前期信息化程度较好的金融业和IT行业,领跑数据团队建设军备竞赛。其中,金融业数据业务外包比例最高,多采用“外包+内生”模式;IT行业的数据团队结构较为集中,拥有独立数据团队的比例最大,而且使用数据外包服务相对较少。 交通运输、医疗健康、公共管理、能源和科教行业处于赛道中端,而住宿餐饮和农业在数据团队建设上仍处于起步或准备阶段。


数据团队建设困境:价值落地艰难、业务团队缺乏合作动力
尽管数据团队在一些行业中发展态势良好,但仍然存在着价值落地艰难、业务团队缺乏合作动力、数据人才存在缺口等困境。

数据团队并不直接产生价值,其价值落地多通过与业务团队有效合作产生。因此,业务团队对数据团队的工作是否满意、有多大合作动力,在很大程度上影响着数据团队的工作效率。

问卷调研结果显示,近40%受访者对数据团队的满意度一般,近26%受访者对数据团队“不满意”或“非常不满意”。
8628dd84649ba632abd2c245da1944f6b4f79ff6
您对所在机构数据团队的满意程度

近80%受访者认为数据团队对自己所在的机构重要或者非常重要。数据团队的价值普遍受到认可。但是,超过40%受访者无法量化数据团队产生的直接价值。
14086413380b4c789ba9c70d3b0e936b65660390
数据为您所在机构带来多大直接价值

行业内数据人才存在较大缺口
专业团队的建设需要实行持久性、针对性的人才储备与培养,优化人才层次和结构,保证团队的正常运转以及长期稳定发展。目前数据团队的人才储备普遍存在较大缺口。数据团队通常需要具备多项能力的复合型人才,数据人才培养周期长、成效慢。

问卷调研结果显示:目前超过50%组织或机构的数据团队人才储备不充足,数据团队普遍存在人才缺口。
7308eeee998cd1451a6c4ce90f4703bd5101b28a
数据团队人才储备状况


数据人才投资
数据团队的组建需要寻找到合适的数据人才。组织或机构在组建数据团队时往往有一个固定的人员预算,因此,在有限的团队预算下,寻找到具备能够满足需求能力的团队成员,就成为团队领导者面临的首要问题之一。

各数据岗位中,自然语言处理工程师、数据科学家、机器学习工程师、算法工程师薪资水平最高,月工资中位数均在2万元人民币以上。

039e17f65f4413343e70c2f909779f0d9fe10aa0
各职位月薪/人民币
7f95416ed00e01bbb7a3ee6b768f8574480df267
各职位招聘的学历要求和对应月薪/人民币


组建高效数据团队
顶级数据团队一般具有相似的特征:所在组织或机构数据驱动战略明确,数据团队运作高效。高层需要设置清晰的数据团队建设目标并将数据纳入决策流程;数据团队的高效运作则需要优秀的团队领导、合理的组织架构和多样化的人才。

1、高层重视

“一个公司能否有领先市场的发展,决策者的眼界非常重要,高管对数据是否敏感,能否下决心把数据推动做好,决定了这个公司的前景和竞争力。”
——LinkedIn用户增长部门数据科学团队负责人 周洋
2、嵌入式工作
“我希望团队在满足业务增长需要的前提下,能保持一个扁平的架构。我会鼓励自己的团队成员与业务部门尽可能多的泡在一起,争取嵌入式的工作,主动研究业务,寻求数据驱动的机会。”
——猎聘首席数据官 单艺
3、Quick Wins

“我鼓励数据团队一旦有了新想法,便去说服同伴,组成2-3人的小团队把这个想法实现出来。再自下而上扩展影响圈,不断完善想法,直至一个新数据应用场景的出现,变成产品。”      
——【友盟+】首席数据官 李丹枫

附件下载:

《顶级数据团队建设全景报告》目录:
89cf3c50841010d4110ea9d0d93efca7dd10ea79
报告来源:大数据文摘微信公众号
目录
相关文章
|
20天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
120 71
|
19天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
128 73
|
3月前
|
监控 安全 网络安全
云计算与网络安全:保护数据的关键策略
【9月更文挑战第34天】在数字化时代,云计算已成为企业和个人存储、处理数据的优选方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨云计算环境中的网络安全挑战,并提供一系列策略来加强信息安全。从基础的数据加密到复杂的访问控制机制,我们将一探究竟如何在享受云服务便利的同时,确保数据的安全性和隐私性不被侵犯。
74 10
|
16天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
62 22
|
2月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
148 56
|
21天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
58 5
|
1月前
|
运维 监控 安全
公司监控软件:SAS 数据分析引擎驱动网络异常精准检测
在数字化商业环境中,企业网络系统面临复杂威胁。SAS 数据分析引擎凭借高效处理能力,成为网络异常检测的关键技术。通过统计分析、时间序列分析等方法,SAS 帮助企业及时发现并处理异常流量,确保网络安全和业务连续性。
54 11
|
1月前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
200 1
|
2月前
|
安全 算法 网络安全
量子计算与网络安全:保护数据的新方法
量子计算的崛起为网络安全带来了新的挑战和机遇。本文介绍了量子计算的基本原理,重点探讨了量子加密技术,如量子密钥分发(QKD)和量子签名,这些技术利用量子物理的特性,提供更高的安全性和可扩展性。未来,量子加密将在金融、政府通信等领域发挥重要作用,但仍需克服量子硬件不稳定性和算法优化等挑战。