递归的理解与简单应用(Java版)

简介: 递归的理解与简单应用(Java版)

1.递归的理解及思路


1.1递归应用场景


迷宫问题,八皇后问题都运用到了递归


980175e624365099419c2cadd54dca8e_819edcfd7bcd198ac0a141363ecb9184.png


1.2递归的概念


简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁。


1.3递归能解决什么样的问题


1) 各种数学问题如: 8皇后问题 , 汉诺塔, 阶乘问题, 迷宫问题, 球和篮子的问题


2) 各种算法中也会使用到递归,比如快排,归并排序,二分查找,分治算法等.


3) 将用栈解决的问题-->第归代码比较简洁


1.4递归需要遵守的重要规则


1) 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)


2) 方法的局部变量是独立的,不会相互影响, 比如 n 变量


3) 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.


4) 递归必须向退出递归的条件逼近,否则就是无限递归,出现 StackOverflowError)


5) 当一个方法执行完毕,或者遇到 return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕


递归-迷宫问题


1) 小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关


2) 测试回溯现象


具体代码实现(含注释):


package com.atguigu.recursion;
public class Queue8 {
    //先定义一个max表示共有多少个皇后
    int max = 8;
    //定义数组array,保存皇后放置位置的结果,比如arr[8] = {0,4,7,5,2,6,1,3}
    int[] array = new int[max];
    static int count = 0;
    public static void main(String[] args) {
        //测试,8皇后是否正确
        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.println(count);
    }
    //编写一个方法,放置第n个皇后
    //特别注意:check是每一次递归时,进入到check中都有for循环
    private void check(int n) {
        if(n == max) {    //n==8,说明8个皇后已经放好
            print();
            return;
        }
        //依次放入皇后,并判断是否冲突
        for(int i =0;i < max;i++) {
            //先把当前这个皇后n,放带该行的第一列
            array[n] = i;
            //判断放置第n个皇后到i列是,是否冲突
            if(judge(n)) {//不冲突
                //借着放n+1个皇后,开始递归
                check(n+1);//
            }
            //如果冲突,就继续指向array[n] = i;即将第n个皇后,放置在本行的后裔一个位置
        }
    }
    //查看当我们放置第n个皇后,就去检测该皇后是否和前面已经摆放的皇后冲突
    private boolean judge(int n) {
        for(int i = 0;i < n;i++) {
            //说明
            //1.array[i] == array[n]  判断第n个皇后和前面n-1个皇后在同一列
            //Math.abs(n-i) == Math.abs(array[n]-array[i])  判断第n个皇后是否和第i个皇后s是否在同一斜线
            if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n]-array[i])) {
                return false;
            }
        }
        return true;
    }
    //写一个方法,可以将皇后摆放的位置输出
    private void print() {
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i]+ " ");
        }
        System.out.println();
    }
}


递归-八皇后问题(回溯算法)


八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不处于同一行、同一列或同一斜线上,问有多少种摆法(92)。


八皇后问题算法思路分析


1) 第一个皇后先放第一行第一列


2) 第二个皇后放在第二行第一列、然后判断是否 OK, 如果不 OK,继续放在第二列、第三列、依次把所有列都


放完,找到一个合适


3) 继续第三个皇后,还是第一列、第二列……直到第 8 个皇后也能放在一个不冲突的位置,算是找到了一个正确



4) 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,


全部得到.


5) 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4 的步骤


具体代码实现:


package com.atguigu.recursion;
public class MiGong {
    public static void main(String[] args) {
        //先创建一个二维数组,模拟迷宫
        //地图
        int[][] map = new int[8][7];
        //使用1表示墙
        //上下全部置为1
        for(int i = 0;i < 7;i++) {
            map[0][i] = 1;
            map[7][i] = 1;
        }
        //左右全部置为1
        for(int i = 0;i < 8;i++) {
            map[i][0] = 1;
            map[i][6] = 1;
        }
        //设置挡板
        map[3][1] = 1;
        map[3][2] = 1;
//        map[1][2] = 1;
//        map[2][2] = 1;
        //输出地图
        System.out.println("地图的情况");
        for(int i = 0;i < map.length;i++) {
            for(int j = 0;j < map[i].length;j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
        //使用递归回溯给小球找路
        //setWay(map,1,1);
        //修改策略
        setWay(map,1,1);
        //输出新的地图,小球走过,并标识过的递归
        System.out.println("小球走过,并标识过 地图的情况");
        for(int i = 0;i < map.length;i++) {
            for(int j = 0;j < map[i].length;j++) {
                System.out.print(map[i][j] + " ");
            }
            System.out.println();
        }
    }
        //使用递归回溯来给小球找路
        //说明
        //1.map表示地图
        //2.i,j表示从地图的哪个位置开始出发(1,1)
        //3.如果小球能到map[6][5]位置,则说明通路能找到
        //4.约定:当map[i][j]为0表示该点没有走过;2表示通路可以走;3表示该店已经走过,但是走不通
        //5.在走迷宫是,需要确定一个策略(方法)  下->右->上->左,如果该店走不通,再回溯
        /*
            map表示地图
            i 从那个位置开始找
            j
            return 如果找到通路就返回true 否则返回false
         */
        public static boolean setWay(int[][] map,int i,int j) {
            if(map[6][5] == 2) {//通路已经找到
                return true;
            }else {
                if(map[i][j] == 0) {//如果当前这个点还没有走过
                    //按照策略  下->右->上->左
                    map[i][j] = 2;//假定该点是可以走通
                    if(setWay(map,i+1,j)) {//向下
                        return true;
                    }else if(setWay(map,i,j+1)) {//向右
                        return true;
                    }else if(setWay(map,i-1,j)) {//向上
                        return true;
                    }else if(setWay(map,i,j-1)) {//向左
                        return true;
                    }else {
                        //说明该点走不通,是死路
                        map[i][j] = 3;
                        return false;
                    }
                }else {//可能是1,2,3
                    return false;
                }
            }
        }
    //修改策略,改成上右下左
        public static boolean setWay1(int[][] map,int i,int j) {
            if(map[6][5] == 2) {//通路已经找到
                return true;
            }else {
                if(map[i][j] == 0) {//如果当前这个点还没有走过
                    //按照策略  下->右->上->左
                    map[i][j] = 2;//假定该点是可以走通
                    if(setWay1(map,i-1,j)) {//向下
                        return true;
                    }else if(setWay1(map,i,j+1)) {//向右
                        return true;
                    }else if(setWay1(map,i+1,j)) {//向上
                        return true;
                    }else if(setWay1(map,i,j-1)) {//向左
                        return true;
                    }else {
                        //说明该点走不通,是死路
                        map[i][j] = 3;
                        return false;
                    }
                }else {//可能是1,2,3
                    return false;
                }
            }
        }
}


在理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] ={0 , 4, 7, 5, 2, 6, 1, 3} //对应 arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第 i+1 个皇后,放在第 i+1行的第 val+1 列

目录
相关文章
|
12天前
|
Java 数据库连接 数据库
Java服务提供接口(SPI)的设计与应用剖析
Java SPI提供了一种优雅的服务扩展和动态加载机制,使得Java应用程序可以轻松地扩展功能和替换组件。通过合理的设计与应用,SPI可以大大增强Java应用的灵活性和可扩展性。
44 18
|
10天前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
7天前
|
SQL JavaScript 前端开发
用Java来开发Hive应用
用Java来开发Hive应用
20 7
|
7天前
|
SQL JavaScript 前端开发
用Java、Python来开发Hive应用
用Java、Python来开发Hive应用
18 6
|
7天前
|
Java 数据库连接 开发者
Java中的异常处理机制:理解与应用
在Java编程中,异常处理是一个核心概念,它允许程序在遇到错误时优雅地恢复或终止。本文将深入探讨Java的异常处理机制,包括异常的分类、如何正确使用try-catch-finally块以及throw关键字。我们将通过实例来说明如何在Java应用程序中有效地捕获和处理异常,以确保程序的健壮性和稳定性。
|
7天前
|
Java 调度 开发者
Java中的多线程基础及其应用
【9月更文挑战第13天】本文将深入探讨Java中的多线程概念,从基本理论到实际应用,带你一步步了解如何有效使用多线程来提升程序的性能。我们将通过实际代码示例,展示如何在Java中创建和管理线程,以及如何利用线程池优化资源管理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧,帮助你更好地理解和应用多线程编程。
|
8天前
|
存储 负载均衡 Java
Jetty技术深度解析及其在Java中的实战应用
【9月更文挑战第3天】Jetty,作为一款开源的、轻量级、高性能的Java Web服务器和Servlet容器,自1995年问世以来,凭借其卓越的性能、灵活的配置和丰富的扩展功能,在Java Web应用开发中占据了举足轻重的地位。本文将详细介绍Jetty的背景、核心功能点以及在Java中的实战应用,帮助开发者更好地理解和利用Jetty构建高效、可靠的Web服务。
22 2
|
12天前
|
Java 数据处理
技术分享:高效与灵活并存——Java版通用树形结构转换工具的实现与应用
在软件开发中,树形结构的数据表现形式无处不在,从文件系统的目录树到组织架构的部门树,再到各类产品的分类结构。处理这些具有层级关系的数据时,将其转换为树形结构以便展示和操作显得尤为重要。Java作为一门成熟的编程语言,虽然提供了强大的集合框架,但并未直接提供树形结构转换的内置工具。因此,开发一个高效且灵活的通用树形结构转换工具成为许多项目中的必备需求。
21 2
|
2天前
|
Kubernetes Cloud Native Java
探索未来编程新纪元:Quarkus带你秒建高性能Kubernetes原生Java应用,云原生时代的技术狂欢!
Quarkus 是专为 Kubernetes 设计的全栈云原生 Java 框架,凭借其轻量级、快速启动及高效执行特性,在 Java 社区脱颖而出。通过编译时优化与原生镜像支持,Quarkus 提升了应用性能,同时保持了 Java 的熟悉度与灵活性。本文将指导你从创建项目、编写 REST 控制器到构建与部署 Kubernetes 原生镜像的全过程,让你快速上手 Quarkus,体验高效开发与部署的乐趣。
8 0
|
2天前
|
Java 开发者
Java中的异常处理机制:理解与应用
在Java编程中,异常处理是确保程序稳定性和可靠性的关键。本文将深入探讨Java的异常处理机制,包括异常的分类、捕获和处理方法,以及如何有效地使用这些工具来提高代码质量。