前言
多线程知识中理解了ReentrantLock之后,对于整个AQS也会有大概的理解,后面再去看其它锁的源码就会比较容易。下面带大家一块来学习ReentrantLock源码。
概述
ReentrantLock是可重入的互斥锁,虽然具有与synchronized相同功能,但是会比synchronized更加灵活(具有更多的方法)。ReentrantLock底层基于AbstractQueuedSynchronized。有两种锁方式公平锁和非公平锁,公平锁指线程锁定后会进入队列进行排队等待至获得锁的使用权;而非公平锁指线程锁定后会尝试获取锁,如果获取失败则进入等待队列进行排队。
正文
应用场景
下面有这么一段代码,有10个线程对count进行累加,每个线程累加10000次,那么最终期望的输出值肯定是100000。
private static int count = 0; private static void inrc() { count++; } public static void main(String[] args) throws InterruptedException { for (int i = 0; i < 10; i++) { new Thread(() -> { for (int a=0;a<10000;a++){ inrc(); } }).start(); } TimeUnit.SECONDS.sleep(3); System.out.println(count); }
不加锁的情况,输出会不符合我们的预期。
使用ReentrantLock加锁。
private static Lock lock = new ReentrantLock(); private static int count = 0; private static void inrc() { try { //加锁 lock.lock(); count++; } catch (Exception e) { e.printStackTrace(); }finally { lock.unlock(); } } public static void main(String[] args) throws InterruptedException { for (int i = 0; i < 10; i++) { new Thread(() -> { for (int a=0;a<10000;a++){ inrc(); } }).start(); } TimeUnit.SECONDS.sleep(3); System.out.println(count); }
输出结果:符合预期
NonfairSync:lock方法
ReentrantLock默认为非公平锁,从其构造方式中可以看出。
public ReentrantLock() { sync = new NonfairSync(); }
下面我们来追踪ReentrantLock的lock()方法,由于默认为非公平锁,所以当我们调用lock方法时,实际调用的是NonfairSync的lock方法
public void lock() { sync.lock(); }
final void lock() { //尝试通过CAS修改state值,如果此时成功的修改了state的值为1,则证明竞争到了锁资源 if (compareAndSetState(0, 1)) //将线程占用者属性设置为当前线程 setExclusiveOwnerThread(Thread.currentThread()); else //如果占用失败,则再次尝试,如果还失败则会加入队列进行等待 acquire(1); }
由于是非公平锁,所以进入该方法时,会先尝试获取锁资源,通过CAS(可以保证原子性,即线程安全)设置state值为1,如果成功设置则是拿到了资源,否则调用acquire方法进行尝试。如果是公平锁的话直接调用acquire()方法;
AQS:acquire方法
public final void acquire(int arg) { //tryAcquire(arg):再次尝试获取锁资源 //addWaiter(Node.EXCLUSIVE):前面的判断如果获取不到锁资源,则将添加当前线程到队列中进行等待 //acquireQueued:自旋尝试获取锁资源 //selfInterrupt():如果当前线程的状态被打断了,则将当前线程打断掉(只有当前线程有权限打断自己所在线程) if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
1、tryAcquire(arg):这里会再次尝试是否能获取到锁资源,有可能当前拥有锁资源的线程就是自己所在的线程,那么这时候是支持锁重入的。
2、acquireQueued(addWaiter(Node.EXCLUSIVE), arg)):添加当前线程到队列中,并以自旋的方式尝试获取锁资源。
3、selfInterrupt():当前线程的状态如果为打断状态,则将当前线程打断掉(只有当前线程有权限打断自己所在线程)
NonfairSync: tryAcquire方法
protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); }
final boolean nonfairTryAcquire(int acquires) { //获取当前线程 final Thread current = Thread.currentThread(); //获取state的状态看是否被占有 int c = getState(); //如果为0,则代表当前为被占有 if (c == 0) { //通过CAS方式尝试修改其值进行资源占用 if (compareAndSetState(0, acquires)) { //成功则将当前线程为资源拥有者 setExclusiveOwnerThread(current); return true; } } //判断资源拥有者与当前线程是否是同个,如果是则将state值进行累加,达到可重入的目的 else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
AQS:addWaiter方法
AQS中的队列结构为双向链表结构,每个节点为node对象,该对象拥有前置节点、后置节点属性;
private Node addWaiter(Node mode) { //将当前线程封装成node Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure //判断链表的尾部节点是否为空,如果为空则证明整个队列没有值 Node pred = tail; if (pred != null) { //设置当前节点的前置节点 node.prev = pred; //通过CAS的方式将当前节点与上个节点关联起来。通过CAS保证线程安全 if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; }
AQS: acquireQueued方法
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; //死循环 for (;;) { //获取当前线程节点在队列中的前一个线程节点 final Node p = node.predecessor(); //判断其是否处于队列头部位置,如果是则代表快轮到自己了,进行尝试获取资源 if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } //判断当前线程的状态是否为等待中,如果是则返回true,不是则将状态设置为等待状态 if (shouldParkAfterFailedAcquire(p, node) && //阻塞并返回当前线程是否被打断标识 parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
AQS:shouldParkAfterFailedAcquire方法
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; //如果上个节点处于等待状态,则代表当前的线程可以进行阻塞,因为上个线程都没获取资源,肯定不会轮到自己的,可以安心阻塞 if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; //状态大于0,证明上个线程取消了,需要从队列中往前查一个未取消的 if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ //将当前节点设置为等待状态 compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
AQS:parkAndCheckInterrupt
private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); }
public static void park(Object blocker) { Thread t = Thread.currentThread(); setBlocker(t, blocker); //调用park方法进行阻塞,这样调用的是native方法,即调用内核态库中的函数 UNSAFE.park(false, 0L); setBlocker(t, null); }
AQS:cancelAcquire方法
private void cancelAcquire(Node node) { // Ignore if node doesn't exist if (node == null) return; //将当前线程置为null,方便gc node.thread = null; // Skip cancelled predecessors //获取上个节点 Node pred = node.prev; while (pred.waitStatus > 0) node.prev = pred = pred.prev; // predNext is the apparent node to unsplice. CASes below will // fail if not, in which case, we lost race vs another cancel // or signal, so no further action is necessary. Node predNext = pred.next; // Can use unconditional write instead of CAS here. // After this atomic step, other Nodes can skip past us. // Before, we are free of interference from other threads. //将线程状态设置为取消 node.waitStatus = Node.CANCELLED; // If we are the tail, remove ourselves. //如果当前线程位于队列的最后一个位置,由于取消了,所以要将上个队列位置的线程置为尾部 if (node == tail && compareAndSetTail(node, pred)) { compareAndSetNext(pred, predNext, null); } else { // If successor needs signal, try to set pred's next-link // so it will get one. Otherwise wake it up to propagate. int ws; //这一步只要将上个线程与下个线程进行关联,移除当前线程在队列的位置 if (pred != head && ((ws = pred.waitStatus) == Node.SIGNAL || (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) && pred.thread != null) { Node next = node.next; if (next != null && next.waitStatus <= 0) compareAndSetNext(pred, predNext, next); } else { //释放下一个线程阻塞状态 unparkSuccessor(node); } node.next = node; // help GC } }
AQS:unparkSuccessor
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) //释放线程的阻塞状态 LockSupport.unpark(s.thread); }
NonfairSync:unlock方法
通过前面的步骤,我们知道处于队列中的线程都处于阻塞状态,持有资源的线程执行完之后,需要调用unlock方法将队列中的下一个线程唤醒,并将自己从队列中进行移除。
public void unlock() { sync.release(1); }
AQS:release方法
public final boolean release(int arg) { //判断是否能释放,因为ReentrantLock是重入锁,每次重入时state会加1,所以如果state-1不等于0的话,需要多次的unlock才能达到释放资源。比如同个线程中调用了两次lock,需要调用两次unlock才能释放资源。 if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) //将下个节点唤醒 unparkSuccessor(h); return true; } return false; }
ReentrantLock:tryRelease方法
protected final boolean tryRelease(int releases) { //将state减一 int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; //如果为0释放资源 if (c == 0) { free = true; setExclusiveOwnerThread(null); } //不为0,证明之前有过重入的情况,需要等该线程的所有unlock方法执行完毕后,state等于0才能释放 setState(c); return free; }
AQS:unparkSuccessor方法
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; //将当前线程状态设置为0 if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ //查找下个节点,状态不为取消的 Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) //唤醒 LockSupport.unpark(s.thread); }
总结
下面画了流程图,帮助大家更好的理解。
非公平锁
公平锁
解锁