时间复杂度与空间复杂度

简介: 时间复杂度与空间复杂度

一、算法的复杂度


算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。


时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


二、时间复杂度


2.1 什么叫时间复杂度


在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。


即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。


实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数(即最高阶的数量级),那么这里我们使用大O的渐进表示法。


例如:


void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N ; ++ i)
  {
    for (int j = 0; j < N ; ++ j)
    {
      ++count;
    }
  }
  for (int k = 0; k < 2 * N ; ++ k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}
该函数一共执行了N^2+2*N+10次,取最高阶的数量级那就是N^2
所以该函数的时间复杂度是N^2


2.2 大O的渐进表示法


大O符号 (Big O notation) 是用于描述函数渐进行为的数学符号。


推导大O阶方法:


1、用常数1取代运行时间中的所有加法常数。


2、在修改后的运行次数函数中,只保留最高阶项。


3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。


大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。


在一个长度为N数组中搜索一个数据x。


最好情况:1次找到


最坏情况:N次找到


平均情况:N/2次找到


在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


2.3 计算时间复杂度的练习


1、


// 计算Func2的时间复杂度?
void Func2(int N)
{
  int count = 0;
  for (int k = 0; k < 2 * N ; ++ k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}
时间复杂度为:O(N)


2、


// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
  int count = 0;
  for (int k = 0; k < M; ++ k)
  {
    ++count;
  }
  for (int k = 0; k < N ; ++ k)
  {
    ++count;
  }
  printf("%d\n", count);
}
时间复杂度为:O(M+N)


3、


// 计算Func4的时间复杂度?
void Func4(int N)
{
  int count = 0;
  for (int k = 0; k < 100; ++ k)
  {
    ++count;
  }
  printf("%d\n", count);
}
时间复杂度为:O(1)


4、


// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
时间复杂度为:O(N)


5、


// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
  assert(a);
  for (size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for (size_t i = 1; i < end; ++i)
    {
      if (a[i-1] > a[i])
      {
        Swap(&a[i-1], &a[i]);
        exchange = 1;
      }
    }
    if (exchange == 0)
      break;
  }
}
时间复杂度为:O(N^2)


6、


// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
  assert(a);
  int begin = 0;
  int end = n-1;
  // [begin, end]:begin和end是左闭右闭区间,因此有=号
  while (begin <= end)
  {
    int mid = begin + ((end-begin)>>1);
    if (a[mid] < x)
      begin = mid+1;
    else if (a[mid] > x)
      end = mid-1;
    else
      return mid;
  }
  return -1;
}
时间复杂度:O(log n)


7、


// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
  if(0 == N)
    return 1;
  return Fac(N-1)*N;
}
时间复杂度是:O(N)


8、


// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
  if(N < 3)
    return 1;
  return Fib(N-1) + Fib(N-2);
}
时间复杂度是:O(2^N)


三、空间复杂度


空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。


空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。


空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。


注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。


示例一:


// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
  assert(a);
  for (size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for (size_t i = 1; i < end; ++i)
    {
      if (a[i-1] > a[i])
      {
        Swap(&a[i-1], &a[i]);
        exchange = 1;
      }
    }
    if (exchange == 0)
      break;
  }
}
空间复杂度为:O(1)


示例二:


// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
  if(n==0)
    return NULL;
  long long * fibArray = (long long *)malloc((n+1) *sizeof(long long));
  fibArray[0] = 0;
  fibArray[1] = 1;
  for (int i = 2; i <= n ; ++i)
  {
    fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
  }
  return fibArray;
}
空间复杂度为:O(N)


示例三:


// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
  if(N == 0)
    return 1;
  return Fac(N-1)*N;
}
空间复杂度:O(N)


四、常见复杂度的对比


一般算法常见的复杂度如下:


相关文章
|
9天前
|
数据采集 人工智能 安全
|
5天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
312 164
|
4天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
318 155
|
5天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
350 4
|
12天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
878 6

热门文章

最新文章