FastText

简介: 简单文本分类网络

FastText具有简单的模型,使其在小数据集上也有不错的预测效果。

# 1 传统分类网络

句子分类的一个简单有效的模型是将句子表示为词袋 (BoW) 并训练线性分类器,例如逻辑回归或支持向量机。

**问题:**但线性分类器不在特征和类之间共享参数,这可能会限制它们在大输出空间的上下文中的泛化。

**解决办法:**是将线性分类器分解为低秩矩阵或使用多层神经网络。


# 2 FastText

该模型就使用了浅层神经网络。整体架构如图所示:

1.png

可以看到,整个网络只有三层:输入层,隐藏层和输出层。

### 2.1 输入

FastText的输入维度是input1(batch_size, sequence length, dim_in)
quence length, dim_in)

FastText具有简单的模型,使其在小数据集上也有不错的预测效果。

1 传统分类网络

句子分类的一个简单有效的模型是将句子表示为词袋 (BoW) 并训练线性分类器,例如逻辑回归或支持向量机。

**问题:**但线性分类器不在特征和类之间共享参数,这可能会限制它们在大输出空间的上下文中的泛化。

**解决办法:**是将线性分类器分解为低秩矩阵或使用多层神经网络。

2 FastText

该模型就使用了浅层神经网络。整体架构如图所示:

可以看到,整个网络只有三层:输入层,隐藏层和输出层。

2.1 输入

FastText的输入维度是input1(batch_size, sequence length, dim_in)

quence length, dim_in)

Markdown 392 字数 25 行数 当前行 1, 当前列 0

HTML 387 字数 12 段落

相关文章
|
存储 索引
文本特征提取-TfidfVectorizer和CountVectorizer
文本特征提取-TfidfVectorizer和CountVectorizer
264 0
文本特征提取-TfidfVectorizer和CountVectorizer
|
5月前
|
算法
HanLP — HMM隐马尔可夫模型 -- 训练
HanLP — HMM隐马尔可夫模型 -- 训练
47 0
HanLP — HMM隐马尔可夫模型 -- 训练
|
5月前
|
机器学习/深度学习 算法 Python
HanLP — 感知机(Perceptron)
HanLP — 感知机(Perceptron)
55 0
|
5月前
|
自然语言处理
HanLP — HMM隐马尔可夫模型 -- 语料库
HanLP — HMM隐马尔可夫模型 -- 语料库
56 0
|
8月前
|
机器学习/深度学习 自然语言处理 ice
[GloVe]论文实现:GloVe: Global Vectors for Word Representation*
[GloVe]论文实现:GloVe: Global Vectors for Word Representation*
63 2
[GloVe]论文实现:GloVe: Global Vectors for Word Representation*
|
数据采集 自然语言处理 开发工具
fasttext实现文本分类
fasttext实现文本分类
342 0
|
机器学习/深度学习 自然语言处理 数据可视化
SimCSE: Simple Contrastive Learning of Sentence Embeddings论文解读
本文介绍了SimCSE,一个简单的对比学习框架,极大地推进了最先进的句子嵌入。我们首先描述了一种无监督方法,该方法采用一个输入句子,并在一个对比目标中预测自己
330 0
|
机器学习/深度学习 数据采集 人工智能
基于TextCNN实现文本分类
本文参考Yoon Kim的论文"Convolutional Neural Networks for Sentence Classification",实现TextCNN卷积神经网络进行文本分类。
280 0
基于TextCNN实现文本分类
|
机器学习/深度学习 Python
判别式模型(discriminative model)和生成模型(generative model)
已知输入变量x,判别模型(discriminative model)通过求解条件概率分布P(y|x)或者直接计算y的值来预测y。生成模型(generative model)通过对观测值和标注数据计算联合概率分布P(x,y)来达到判定估算y的目的。
503 0
判别式模型(discriminative model)和生成模型(generative model)
|
机器学习/深度学习 大数据 API
Libsvm 数据 DNN 训练—从 Keras 到 Estimator
## 背景 手上有个 Libsvm 格式数据集,已经跑过 LR 和 GBDT,想快速看下 DNN 的效果?那本文正适合你。 尽管深度学习研究和应用的热潮已持续高涨多年,TensorFlow 早已为算法同学所熟知,但并非所有人都对这个工具驾轻就熟,要在个人数据集上跑个简易 DNN 模型出来也不是顷刻间的事,特别是当数据集是 Libsvm 格式时。
4181 0