带你读《2022技术人的百宝黑皮书》——大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)(9)

简介: 带你读《2022技术人的百宝黑皮书》——大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)(9)

带你读《2022技术人的百宝黑皮书》——大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)(8) https://developer.aliyun.com/article/1243532?groupCode=taobaotech



NTIRE22


我们提出方法在NTIRE 2022压缩视频超分辨率和质量增强挑战赛的三个赛道表现如表8所示。在三个赛道中,均使用了测试时集成方法[31,32],其中Track 3赛道还使用了模型融合方法。具体地,对于Track 1、2,对输入视频帧进行翻转和旋转,为每个样本生成8个增强副本,然后分别送入第一阶段和第二阶段网络,最终计算第二阶段网络的8种预测平均值。对于Track 3,除了Track 1、2中的8种增强手段外,还在第一阶段进行了模型集成,即对两个模型的16种预测计算平均值,并将该平均值用作第二阶段模型的输入。


image.png

表8 我们的方法在NTIRE 2022挑战赛中的PSNR表现


结论


我们提出了一个两阶段视频增强框架,用于同时去除压缩伪影和缓解视频帧间质量波动,引入了渐进式训练和迁移学习策略,用以稳定训练过程、缩短训练时间,并最终提高视频增强性能,在增强性能和模型复杂度之间取得了良好的平衡,并在NTIRE2022视频超分与压缩伪影增强挑战赛中获得了两项冠军和一项亚军。


团队介绍


代表阿里巴巴参加本届NTIRE比赛夺魁的参赛团队,出自大淘宝技术内容团队,负责音视频算法和相关基础技术。


团队同时支持大淘宝内容业务,致力于打造业界领先的音视频体验,尤其是视频画质和流畅度,通过视频编码器S265、视频增强方案STaoVideo,以及媒体处理系统TMPS,为直播和短视频提供核心技术。相关算法技术目前服务于包括直播、逛逛、点淘、首猜等大淘宝业务并可被集团其它业务复用。通过持续的技术打磨和算法创新力求高质量、低成本赋能淘宝内容业务。团队在视频增强STaoVideo方面引入差异化的智美高清和普惠高清算子,分别针对高热视频和大盘视频提升画质并降低转码过程中的算力成本开销。团队既关注人眼主观体验,同时积极探索能够提升客观指标的方法。此次比赛的冠军方案:渐进式训练的两阶段视频恢复方法就是团队同学在日常业务研发中探索出的新方法。


团队负责人认为大淘宝内容业务足够复杂,包含多样化的真实场景,为算法同学提供了持续迭代技术,实时赋能业务,创造价值的舞台,团队亦可籍此沉淀技术领先性。依托当前技术储备,适当投入高水平的国际赛事,对团队来说是一个很好的练兵和面向业界前沿学习和交流的机会。


内容化正在驱动互联网进入新周期,音视频技术是其中重要的技术板块。此次在NTIRE取得出色成绩,是大淘系技术长期以来对音视频领域的持续投入和不断创新的阶段性成果。随着以淘宝直播、逛逛、点淘为代表的内容化业务的发展,内容场和电商场的双重复杂度不断叠加,未来不仅是音视频技术,大淘系技术在多模态、3D XR、认知计算与知识图谱等技术领域的迭代长期都会处在加速状态。


带你读《2022技术人的百宝黑皮书》——大淘宝技术斩获NTIRE视频增强和超分比赛冠军(内含夺冠方案)(10) https://developer.aliyun.com/article/1243529?groupCode=taobaotech


相关文章
yum安装openJDK1.7
yum安装openJDK1.7
422 0
|
SQL 监控 关系型数据库
【巡检问题分析与最佳实践】RDS PostgreSQL 实例IO高问题
实例的磁盘IO负载是RDS PostgreSQL用户日常应重点关注的监控项之一,如果磁盘IO压力过大,很容易导致数据库性能问题。
【巡检问题分析与最佳实践】RDS PostgreSQL 实例IO高问题
|
弹性计算
购买阿里云服务器后,在哪里查看服务器信息?
今天就遇见了一位找不到自己服务器的朋友,下面专门为新来的伙伴们介绍一下在哪里查看自己的服务器产品。 1、登录阿里云后,进入控制台 控制台左侧菜单,找到云服务器ECS 2、在我的资源点击对应的服务器或者实例 (点击这个数字) 3、打开相对应的服务器 4、就可以查看服务器的详细配置啦
22896 1
|
数据采集 存储 大数据
数据治理:数据孤岛是企业信息化发展中难以避免的阶段
数据孤岛是企业信息化发展中难以避免的阶段。企业需要正视这一现象,通过完善数据治理体系、加强部门协作、采用先进技术手段等措施,逐步消除数据孤岛,实现数据的有效整合和利用。只有这样,企业才能在激烈的市场竞争中立于不败之地。
1066 0
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
消息中间件 供应链 架构师
微服务如何实现低耦合高内聚?架构师都在用的技巧!
本文介绍了微服务的拆分方法,重点讲解了“高内聚”和“低耦合”两个核心设计原则。高内聚强调每个微服务应专注于单一职责,减少代码修改范围,提高系统稳定性。低耦合则通过接口和消息队列实现服务间的解耦,确保各服务独立运作,提升系统的灵活性和可维护性。通过领域建模和事件通知机制,可以有效实现微服务的高效拆分和管理。
441 7
|
机器学习/深度学习 编解码 算法
SwinFIR:用快速傅里叶卷积重建SwinIR和改进的图像超分辨率训练
SwinFIR:用快速傅里叶卷积重建SwinIR和改进的图像超分辨率训练
521 1
|
Shell
bash: accelerate: command not found
bash: accelerate: command not found
3870 3
|
Linux 网络安全 iOS开发
一日一技:让Tmux完美支持鼠标,不记忆任何快捷键(仅限macOS)
一日一技:让Tmux完美支持鼠标,不记忆任何快捷键(仅限macOS)
1263 0
|
存储 Linux 测试技术
2023年C/C++高性能技术知识大整理(进阶到大神级别)
2023年C/C++高性能技术知识大整理(进阶到大神级别)