m基于遗传优化的凸松弛算法完成从二维人体图像中提取三维姿态的matlab仿真

简介: m基于遗传优化的凸松弛算法完成从二维人体图像中提取三维姿态的matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

586574394bcc43316889170065b6d14f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
609681fb7997b8453b6197398f9ed6a3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
f15b862e40b510526b6e8e6c1bec3b27_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
三维姿态估计是计算机视觉领域中一个非常重要的问题,它在许多应用中都具有重要的作用,如人机交互、姿态识别、动作捕捉等。在过去的几年中,随着深度学习技术的发展,基于深度学习的方法取得了很大的进展,但是这些方法仍然存在许多问题,如对于遮挡和复杂姿态的处理等。
二维人体图像到三维姿态的转换一直是计算机视觉领域中的难题。在本文中,我们将介绍一种新的方法,该方法使用基于凸松弛的方法来估计三维姿态。凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。我们还将使用遗传优化算法来进一步提高凸松弛算法的性能。
凸松弛是一种数学优化方法,它可以用来解决许多实际问题,包括姿态估计。在本文中,我们将使用凸松弛算法来估计三维姿态。凸松弛算法使用了一种强大的数学工具,称为凸优化,该工具可以在不知道准确模型参数的情况下,通过最小化目标函数来估计模型参数。凸优化是一种非常有效的优化方法,因为它可以保证全局最优解。
基于遗传优化的凸松弛算法,凸松弛算法是一种非常强大的数学工具,但是在实际应用中,它仍然存在许多问题,如局部最优解和收敛速度慢等。为了解决这些问题,我们将引入遗传优化算法来进一步提高凸松弛算法的性能。
遗传优化算法是一种基于生物学进化理论的优化算法,它通过模拟自然选择和遗传变异来搜索最优解。在本文中,我们将使用遗传优化算法来搜索凸松弛算法的最优解。具体来说,我们将使用遗传优化算法来搜索凸松弛算法的参数,以使目标函数最小化。使用遗传优化算法可以加快凸松弛算法的收敛速度,并且可以更好地避免局部最优解。提出的基于遗传优化的凸松弛算法的性能。我们将我们的方法与一些最新的三维姿态估计方法进行比较,包括基于深度学习的方法和基于传统优化方法的方法。

   遗传优化长度为L的n个二进制串bi(i=1,2,…,n)组成了遗传算法的初解群,也称为初始群体。在每个串中,每个二进制位就是个体染色体的基因。根据进化术语,对群体执行的操作有三种:

1.选择(Selection)

这是从群体中选择出较适应环境的个体。这些选中的个体用于繁殖下一代。故有时也称这一操作为再生(Reproduction)。由于在选择用于繁殖下一代的个体时,是根据个体对环境的适应度而决定其繁殖量的,故而有时也称为非均匀再生(differential reproduction)。

2.交叉(Crossover)

这是在选中用于繁殖下一代的个体中,对两个不同的个体的相同位置的基因进行交换,从而产生新的个体。

3.变异(Mutation)

   这是在选中的个体中,对个体中的某些基因执行异向转化。在串bi中,如果某位基因为1,产生变异时就是把它变成0;反亦反之。

4.全局最优收敛(Convergence to the global optimum)

    当最优个体的适应度达到给定的阀值,或者最优个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛、算法结束。否则,用经过选择、交叉、变异所得到的新一代群体取代上一代群体,并返回到第2步即选择操作处继续循环执行。

3.MATLAB核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

%初始spread 
mu     = 1;

%根据遗传算法进行参数的拟合
MAXGEN = 20;
NIND   = 50;
Chrom  = crtbp(NIND,1*10);
%14个变量的区间
Areas  = [0.5;
          1.5];

FieldD = [rep([10],[1,1]);Areas;rep([0;0;0;0],[1,1])];

LR     = zeros(NIND,1);
MU2    = zeros(MAXGEN,1);
gen              = 0;

for a=1:1:NIND 
    a
    LR(a)    = mu;       
    %计算对应的目标值
    errs     = func_obj(LR(a));
    E        = errs;
    J(a,1)   = E;
end

Objv  = (J+eps);
gen   = 0; 

while gen < MAXGEN;   
      gen

      P1 = 0.9;
      P2 = 1-P1;

      FitnV=ranking(Objv);    

      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,P1);   
      Selch=mut( Selch,P2);   
      phen1=bs2rv(Selch,FieldD);   
      for a=1:1:NIND  
          if  gen == 1
              LR(a)    = mu;               
          else
              LR(a)    = phen1(a,1);      
          end

          %计算对应的目标值
          errs    = func_obj(LR(a));
          E       = errs;
          JJ(a,1) = E;
      end 
      Objvsel=(JJ+eps);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 

      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      MU2(gen)   = mean(LR);
      Error(gen) = mean(JJ);
      deltaf     = Error(gen);
end
相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
268 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
178 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
188 8
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
121 0
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
168 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
204 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
226 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
163 6

热门文章

最新文章