转:最大公约数算法很无聊吗?一个轻松方法(辗转相除法)3行代码搞定

简介: 最大公约数算法不是很无聊,计算最大公约数是数学中一个重要的概念,可以用于判断两个数是否互质、求分数的约分等,在很多领域都有广泛的应用。辗转相除法3行代码搞定。

最大公约数算法不是很无聊,计算最大公约数是数学中一个重要的概念,可以用于判断两个数是否互质、求分数的约分等,在很多领域都有广泛的应用。具体如下:

  1. 判断两个数是否互质:两个数的最大公约数为1,说明这两个数是互质的。
  2. 求分数的约分:将分子和分母的最大公约数约分掉,使得分数的值不变。
  3. 求同余方程的最小正整数解:例如求ax ≡ b (mod m) 的最小正整数解。
  4. 求两个数的最小公倍数:两个数的乘积除以它们的最大公约数。
  5. 判断数的因数:通过求数的最大公约数判断是否为该数的因数。
    辗转相除法:
    • 如果两个整数不相等,则将大数除以小数,将余数代替较小数再进行同样的除法操作。
    • 重复上述操作,直到两个数相等,则两个数的最大公约数就是这两个数。
    更相减损术:
    • 将两个数中的较大数减去较小数,再把差代替较大数,进行同样的减法操作。
    • 重复上述操作,直到两个数相等,则两个数的最大公约数就是这两个数。
    穷举法:
    • 从1到较小数遍历,判断是否是两个数的公因数,如果是则记录。
    • 得到的公因数中,最大的即为两个数的最大公约数。
    质因数分解法:
    • 将两个数的质因数分解,并列出它们的公因数。
    • 公因数中的最大值即为两个数的最大公约数。
    下面是最大公约数算法的 Python 代码示例:
    def gcd(a, b):
    while b:
    a, b = b, a % b
    return a
    这是一种辗转相除法求最大公约数的方法,它每次通过计算余数,来降低计算复杂度。
    本文转载自https://www.vipshare.com/archives/40243
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
165 4
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
73 3
|
19天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
130 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
存储 算法 安全
SnowflakeIdGenerator-雪花算法id生成方法
SnowflakeIdGenerator-雪花算法id生成方法
49 1
|
7月前
|
数据采集 机器学习/深度学习 算法
机器学习方法之决策树算法
决策树算法是一种常用的机器学习方法,可以应用于分类和回归任务。通过递归地将数据集划分为更小的子集,从而形成一棵树状的结构模型。每个内部节点代表一个特征的判断,每个分支代表这个特征的某个取值或范围,每个叶节点则表示预测结果。
193 1
|
2月前
|
JSON 算法 数据挖掘
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
127 0
|
3月前
|
算法 索引
HashMap扩容时的rehash方法中(e.hash & oldCap) == 0算法推导
HashMap在扩容时,会创建一个新数组,并将旧数组中的数据迁移过去。通过(e.hash & oldCap)是否等于0,数据被巧妙地分为两类:一类保持原有索引位置,另一类索引位置增加旧数组长度。此过程确保了数据均匀分布,提高了查询效率。
64 2
|
3月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
109 9
|
3月前
|
存储 算法 Java
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
前缀(波兰)表达式、中缀表达式和后缀(逆波兰)表达式的基本概念、计算机求值方法,以及如何将中缀表达式转换为后缀表达式,并提供了相应的Java代码实现和测试结果。
227 0
数据结构与算法学习八:前缀(波兰)表达式、中缀表达式、后缀(逆波兰)表达式的学习,中缀转后缀的两个方法,逆波兰计算器的实现
|
3月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
169 1

热门文章

最新文章