一看就懂之与栈结构(FILO)相对的——队列结构(FLFO)

简介: 一、什么是队列,什么是FIFO​ 队列允许在一端进行插入操作,在另一端进行删除操作的线性表,队列是与栈相对的一个数据结构,栈的特点是先进后出,而队列的特点是先进先出,进行插入操作的一端叫队尾,进行删除的一端叫队头。正如队列的名字一样,我们假设有一个队列(正在排队的一列队伍),一群人,人们依次进入队列进行排队。

一、什么是队列,什么是FIFO

队列允许在一端进行插入操作,在另一端进行删除操作的线性表,队列是与相对的一个数据结构,栈的特点是先进后出,而队列的特点是先进先出,进行插入操作的一端叫队尾,进行删除的一端叫队头。

正如队列的名字一样,我们假设有一个队列(正在排队的一列队伍),一群人,人们依次进入队列进行排队。

插入模拟图349e85fe0d084fd4a22965f112132ec7.gif

显然先排队的必然先出来,依次取出,和放入的顺序一样,这就是队列(FIFO)。

删除模拟图

74bc004281f243979a3bf2fa2075069d.gif

从程序化的角度来讲,应该有两个标记,一个标记着队头,一个标记着队尾,队头用来删除数据,队尾则用来插入数据。

二、使用C模拟实现以及解析队列

队列有两种实现方式,一种是使用数组来实现,另一种是使用链表来实现,由于队列需要对头部进行插入操作,使用数组效率方面会大打折扣,所以选择使用链表来实现队列是较优的选择。

1.结构体的定义

使用链表实现队列首先我们需要定义一个链表,其次由于需要在链表的头和尾进行插入以及删除操作,所有要定义两个指针分别记录下头和尾,再加入一个size来记录链表的大小。

typedef int QDataType;
typedef struct QListNode
{
  struct QlistNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* front;
  QNode* tail;
  int size;
}Queue;

2.队列的创建及销毁

由于函数内有对参数指针的引用,加上assert预防程序崩溃,易于调试,摧毁的时候需要每个结点每个结点的进行销毁,因为链表的空间都是从堆中申请出来的,不进行释放会造成内存泄漏,全部释放之后再将指针制空。

void QueueInit(Queue* q)
{
  assert(q);
  q->front = NULL;
  q->tail = NULL;
  q->size = 0;
}
void QueueDestroy(Queue* q)
{
  assert(q);
  QNode* cur = q->front;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  q->front = NULL;
  q->tail = NULL;
  q->size = 0;
}

3.实现插入操作

每次插入需要申请一块新节点,如果链表为空第一次进行插入(及链表为空),需要将头和尾全部指向新节点,如果不是第一次插入(不为空),则将tail指向新节点。然后对size进行++。

bool QueueEmpty(Queue* q)
{
  return q->front == NULL;
}
void QueuePush(Queue* q, QDataType data)
{
  assert(q);
  QNode *temp = (QNode*)malloc(sizeof(QNode));
  if (temp == NULL)
  {
    perror("malloc error");
    return;
  }
  QNode* Newnode = temp;
  Newnode->data = data;
  Newnode->next = NULL;
  if (QueueEmpty(q))
  {
    q->front = q->tail = Newnode;
  }
  else
  {
    q->tail->next = Newnode;
    q->tail = q->tail->next;
  }
  q->size++;
}

4.队列删除操作

如果为空,不能进行删除,如果不为空释放掉头结点,将头结点指向原来头结点的下一个,这里需要注意如果头结点下一个为空,就不能只将头结点指向下一个(空),还需要将尾结点置空。

void QueuePop(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  QNode* next = q->front->next;
  free(q->front);
  q->front = next;
  if (next == NULL)
    q->tail == NULL;
  q->size--;
}

5.获取栈中有效元素个数以及头元素尾元素

返回对应变量即可。

int QueueSize(Queue* q)
{
  assert(q);
  return q->size;
}
QDataType QueueFront(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->front->data;
}
QDataType QueueBack(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->tail->data;
}

源代码分享

//Queue.h
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <assert.h>
#include <stdbool.h>
#include <malloc.h>
typedef int QDataType;
typedef struct QListNode
{
  struct QlistNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* front;
  QNode* tail;
  int size;
}Queue;
void QueueInit(Queue* q);
void QueuePush(Queue* q, QDataType data);
void QueuePop(Queue* q);
QDataType QueueFront(Queue* q);
QDataType QueueBack(Queue* q);
int QueueSize(Queue* q);
bool QueueEmpty(Queue* q);
void QueueDestroy(Queue* q);
//Queue.c
#include "Queue.h"
void QueueInit(Queue* q)
{
  assert(q);
  q->front = NULL;
  q->tail = NULL;
  q->size = 0;
}
void QueueDestroy(Queue* q)
{
  assert(q);
  QNode* cur = q->front;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  q->front = NULL;
  q->tail = NULL;
  q->size = 0;
}
bool QueueEmpty(Queue* q)
{
  return q->front == NULL;
}
void QueuePush(Queue* q, QDataType data)
{
  assert(q);
  QNode *temp = (QNode*)malloc(sizeof(QNode));
  if (temp == NULL)
  {
    perror("malloc error");
    return;
  }
  QNode* Newnode = temp;
  Newnode->data = data;
  Newnode->next = NULL;
  if (QueueEmpty(q))
  {
    q->front = q->tail = Newnode;
  }
  else
  {
    q->tail->next = Newnode;
    q->tail = q->tail->next;
  }
  q->size++;
}
void QueuePop(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  QNode* next = q->front->next;
  free(q->front);
  q->front = next;
  if (next == NULL)
    q->tail == NULL;
  q->size--;
}
int QueueSize(Queue* q)
{
  assert(q);
  return q->size;
}
QDataType QueueFront(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->front->data;
}
QDataType QueueBack(Queue* q)
{
  assert(q);
  assert(!QueueEmpty(q));
  return q->tail->data;
}
//test.c
#include "Queue.h"
void test()
{
  Queue pq;
  QueueInit(&pq);
  QueuePush(&pq,1);
  QueuePush(&pq,2);
  QueuePush(&pq,3);
  QueuePush(&pq,4);
  QueuePush(&pq,5);
  QueuePush(&pq,6);
  QNode* cur = pq.front;
  while (cur)
  {
    QNode* next = cur->next;
    printf("%d ", cur->data);
    cur = next;
  }
  printf("\n");
  QueuePop(&pq);
  QueuePop(&pq);
  QueuePop(&pq);
  cur = pq.front;
  while (cur)
  {
    QNode* next = cur->next;
    printf("%d ", cur->data);
    cur = next;
  }
  printf("\n");
  QueueSize(&pq);
  printf("%d", QueueFront(&pq));
  printf("%d", QueueBack(&pq));
  QueueDestroy(&pq);
}
int main()
{
  test();
}

d7d3c9764adc43d09c554697b8c3b851.gif

✨本文收录于数据结构理解与实现

下几期会继续带来栈与堆的练习题。如果文章对你有帮助记得点赞收藏关注。











相关文章
|
2天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
16 5
【数据结构】优先级队列(堆)从实现到应用详解
|
8天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
10天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
10天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
10天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
11天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
算法 C语言 C++
【practise】栈的压入和弹出序列
【practise】栈的压入和弹出序列
|
1月前
栈的几个经典应用,真的绝了
文章总结了栈的几个经典应用场景,包括使用两个栈来实现队列的功能以及利用栈进行对称匹配,并通过LeetCode上的题目示例展示了栈在实际问题中的应用。
栈的几个经典应用,真的绝了
|
1月前
|
负载均衡 网络协议 安全
DKDP用户态协议栈-kni
DKDP用户态协议栈-kni