【数据湖仓架构】数据湖和仓库:Databricks 和 Snowflake

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【数据湖仓架构】数据湖和仓库:Databricks 和 Snowflake

是时候将数据分析迁移到云端了。我们比较了 Databricks 和 Snowflake,以评估基于数据湖和基于数据仓库的解决方案之间的差异。


在这篇文章中,我们将介绍基于数据仓库和基于数据湖的云大数据解决方案之间的区别。我们通过比较多种云环境中可用的两种流行技术来做到这一点:Databricks 和 Snowflake。

正如我们在上一篇文章中了解到的,数据分析平台可以分为多个阶段。上面,我们可以看到一张图片,大致了解了管道中 Snowflake 和 Databricks 的角色。在这里,我们可以将工具分类为处理(绿色)或存储(蓝色) Databricks 是一种处理工具,而 Snowflake 涵盖了处理和存储。另一方面,Delta Lake 是与 Databricks 相关的存储解决方案。我们稍后会介绍。

根据上一篇给出的定义,我们可以粗略的说Databricks是一个基于数据湖的工具,而Snowflake是一个基于数据仓库的工具。现在让我们更深入地研究这些工具。

Databricks 是具有数据仓库功能的数据湖工具

Databricks 是一个基于 Apache Spark 的处理工具,它为编程环境提供高度可自动扩展的计算能力。Apache Spark 是基于编码的大数据处理的事实上的标准编程框架。

Databricks 计费本质上是基于使用情况的。您为使用的计算资源付费,仅此而已。原则上,Databricks 特别适合在管道的早期阶段处理数据,尤其是在青铜层和银层之间它也可用于准备黄金层数据,但在为报告工具等提供数据方面并不是最好的。


最近,Databricks 已将其能力大幅扩展至传统数据仓库的方向。Databricks 提供了现成的 SQL 查询接口和轻量级的可视化层。此外,Databricks 提供了一种数据库类型的表结构。数据库类型功能是专门使用 Delta 文件格式开发的

Delta 文件格式是一种将数据库优势带入数据湖世界的方法。除其他外,该格式提供数据模式版本控制和数据库类型 ACID 事务。根据数据湖范式,文件格式本身是开放的,任何人都可以免费使用。

基于 Delta 格式和 Databricks 工具,该公司正在尝试为数据湖和数据仓库混合方法传播一种新颖的“Data Lakehouse”范式概念。

Snowflake 是一个借鉴数据湖范式的可扩展数据仓库

Snowflake 是专为云环境开发的可扩展数据仓库解决方案。 Snowflake 以专有文件格式将数据存储在云存储中。因此,根据数据仓库范式,数据只能通过 Snowflake 获得。除了计算资源外,您还需要为雪花文件格式的数据存储付费。但是,您还可以使用典型的数据仓库功能,例如可用的精细权限管理

几年前,Snowflake 通过提供高度分布式和可扩展的计算能力扰乱了数据仓库市场。这是通过在数据仓库架构中完全分离存储和处理层来完成的。传统上,这一直是大数据世界中数据仓库解决方案的主要障碍。这是 Snowflake 向数据湖范式方向扩展其解决方案的方式之一。如今,它提供了用于实时数据摄取的高效工具等。


说 Snowflake 的成功给 Amazon Redshift 和 Azure Data Warehouse 开发带来了危机,这可能并不为过。后两种数据仓库解决方案的可扩展性明显受到更多限制:如果您想避免高额费用,则需要在小存储容量或慢处理之间进行选择。很多时候,很难找到合适的组合。因此,您通常会为您没有实际使用的储备资源支付大量资金。尽管如此,这两款产品都已采取措施解决这个问题。

结论:Databricks 和 Snowflake

在这篇文章中,我们讨论了两个非常流行的多云数据分析产品:Databricks 和 Snowflake。正如上一篇博文中所讨论的,我们从它们的背景范式的角度专门研究了它们。

我们注意到 Snowflake 在数据仓库领域有基础,而 Databricks 更面向数据湖。然而,两者都将其范围扩展到了其范式的典型限制之外。


这两种工具绝对可以单独使用来满足数据分析平台的需求。 Databricks 可以直接从存储中提供数据或将数据导出到数据集市。不需要单独的数据仓库另一方面,可以将数据直接摄取到 Snowflake 进行处理、建模和提供。以我的经验,纯Snowflake解决方案更常见,可能是因为 Databricks 已经出现很久了。

然而,正如在上一篇文章中提到的,在一个平台上同时使用这两种产品可能是个好主意。图中描述了这种解决方案的故障,Databricks 读取和处理原始数据,Snowflake 负责管道的发布端。同样重要的是要注意 Databricks 和 Snowflake 正在合作以更好地集成产品。

总而言之,混合解决方案的未来似乎更加光明。


原文https://architect.pub/data-lakes-and-warehouses-databricks-and-snowflake

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
消息中间件 存储 缓存
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
76 8
|
3月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
618 7
|
3月前
|
数据采集 搜索推荐 数据管理
数据架构 CDP 是什么?
数据架构 CDP 是什么?
111 2
|
6月前
|
机器学习/深度学习 数据采集 人工智能
揭秘!47页文档拆解苹果智能,从架构、数据到训练和优化
【8月更文挑战第23天】苹果公司发布了一份47页的研究文档,深入解析了其在智能基础语言模型领域的探索与突破。文档揭示了苹果在此领域的雄厚实力,并分享了其独特的混合架构设计,该设计融合了Transformer与RNN的优势,显著提高了模型处理序列数据的效能与表现力。然而,这种架构也带来了诸如权重平衡与资源消耗等挑战。苹果利用海量、多样的高质量数据集训练模型,但确保数据质量及处理噪声仍需克服。此外,苹果采取了自监督与无监督学习相结合的高效训练策略,以增强模型的泛化与稳健性,但仍需解决预训练任务选择及超参数调优等问题。
171 66
|
2月前
|
SQL 存储 分布式计算
Paimon助力数据湖仓架构实时化升级
本次分享由阿里云高级技术专家李劲松介绍Paimon助力数据湖仓架构实时化升级。内容涵盖四个部分:1) 数据架构的存储演进,介绍Data LakeHouse结合的优势;2) Paimon实时数据湖,强调其批流一体和高效处理能力;3) 数据湖的实时流式处理,展示Paimon在时效性提升上的应用;4) 数据湖非结构化处理,介绍Paimon对非结构化数据的支持及AI集成。Paimon通过优化存储格式和引入LSM技术,实现了更高效的实时数据处理和查询性能,广泛应用于阿里巴巴内部及各大公司,未来将进一步支持AI相关功能。
|
5月前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
68 5
|
4月前
|
存储 大数据 数据处理
洞察未来:数据治理中的数据架构新思维
数据治理中的数据架构新思维对于应对未来挑战、提高数据处理效率、加强数据安全与隐私保护以及促进数据驱动的业务创新具有重要意义。企业需要紧跟时代步伐,不断探索和实践新型数据架构,以洞察未来发展趋势,为企业的长远发展奠定坚实基础。
|
6月前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
6月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
6月前
|
SQL DataWorks 数据库连接
实时数仓 Hologres操作报错合集之如何将物理表数据写入临时表
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。

相关产品

  • Databricks 数据洞察