白话Elasticsearch47-深入聚合数据分析之Cardinality Aggs-cardinality算法之优化内存开销以及HLL算法

简介: 白话Elasticsearch47-深入聚合数据分析之Cardinality Aggs-cardinality算法之优化内存开销以及HLL算法

20190806092132811.jpg


概述

继续跟中华石杉老师学习ES,第47篇

课程地址https://www.roncoo.com/view/55


官方说明

Cardinality Aggregation:戳这里



20190825211315619.png


precision_threshold优化准确率和内存开销

原始数据:


20190825212049201.png


统计下有多少个不同的品牌

DSL:

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand",
              "precision_threshold" : 100 
            }
        }
    }
}

20190825211923761.png


注意下 "precision_threshold" : 100 的意思是: brand去重,如果brand的unique value,在100个以内,小米,长虹,三星,TCL,HTL。。。 在多少个unique value以内,cardinality,几乎保证100%准确 。


20190825212232275.png


cardinality算法,会占用precision_threshold * 8 byte 内存消耗,100 * 8 = 800个字节 占用内存很小。。。而且unique value如果的确在值以内,那么可以确保100%准确


precision_threshold,值设置的越大,占用内存越大, 假设设置 1000,那么1000 * 8 = 8000 / 1000 = 8KB,可以确保更多unique value的场景下,100%的准确


field,去重,count,这时候,unique value,10000, precision_threshold=10000,10000 * 8 = 80000个byte,80KB


HyperLogLog++ (HLL)算法性能优化


cardinality底层算法:HLL算法,HLL算法的性能会对所有的uqniue value取hash值,通过hash值近似去求distcint count,存在误差 .

默认情况下,发送一个cardinality请求的时候,会动态地对所有的field value,取hash值;


20190825212846385.png

优化的话: 将取hash值的操作,前移到建立索引的时候 ,如下

PUT /tvs/
{
  "mappings": {
    "sales": {
      "properties": {
        "brand": {
          "type": "text",
          "fields": {
            "hash": {
              "type": "murmur3" 
            }
          }
        }
      }
    }
  }
}



这样在执行同样的查询的话,就不会在请求的时候执行hash值了。

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : {
        "distinct_brand" : {
            "cardinality" : {
              "field" : "brand.hash",
              "precision_threshold" : 100 
            }
        }
    }
}


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
机器学习/深度学习 人工智能 算法
深度探索数据聚合算法:提高文档管理软件整理效率的秘诀
在这个数字时代,文档管理软件成为了我们日常生活和工作中的强力伙伴。然而,随着文档数量的爆炸增长,文档的整理和分类变得越来越令人头疼。幸运的是,有了新一代的数据聚合算法,我们能够轻松摆脱繁琐的整理工作,使文档管理变得轻松愉快。接下来,让我们深入探讨一下数据聚合算法如何提高文档管理软件中的文档整理效率。
310 0
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
2115 1
|
8月前
|
存储 机器学习/深度学习 监控
如何监控员工的电脑——基于滑动时间窗口的Java事件聚合算法实现探析​
在企业管理场景中,如何监控员工的电脑操作行为是一个涉及效率与合规性的重要课题。传统方法依赖日志采集或屏幕截图,但数据量庞大且实时性不足。本文提出一种基于滑动时间窗口的事件聚合算法,通过Java语言实现高效、低资源占用的监控逻辑,为如何监控员工的电脑提供一种轻量化解决方案。
213 3
|
存储 算法 数据挖掘
图像处理之Fuzzy C Means的聚合算法
图像处理之Fuzzy C Means的聚合算法
246 7
图像处理之Fuzzy C Means的聚合算法
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
261 1
|
自然语言处理 Java 关系型数据库
ElasticSearch 实现分词全文检索 - 聚合查询 cardinality
ElasticSearch 实现分词全文检索 - 聚合查询 cardinality
429 1
|
存储 缓存 监控
深入解析Elasticsearch的内存架构与管理
深入解析Elasticsearch的内存架构与管理
深入解析Elasticsearch的内存架构与管理
|
存储 缓存 数据处理
ELK中 Elasticsearch和Logstash内存大小设置的考虑
ELK中 Elasticsearch和Logstash内存大小设置的考虑
746 0
|
监控 数据可视化 Java
Elasticsearch JVM 堆内存使用率飙升,怎么办?
Elasticsearch JVM 堆内存使用率飙升,怎么办?
|
算法 数据可视化 Python
R语言中使用多重聚合预测算法(MAPA)进行时间序列分析
R语言中使用多重聚合预测算法(MAPA)进行时间序列分析

热门文章

最新文章