CVPR 2023 | 多个扩散模型相互合作,新方法实现多模态人脸生成与编辑

简介: CVPR 2023 | 多个扩散模型相互合作,新方法实现多模态人脸生成与编辑
本文提出了一种简单有效的方法来实现不同扩散模型之间的合作。


近一两年,扩散模型 (diffusion models) 展现出了强大的生成能力。不同种类的扩散模型性能各异 —— text-to-image 模型可以根据文字生成图片,mask-to-image 模型可以从分割图生成图片,除此之外还有更多种类的扩散模型,例如生成视频、3D、motion 等等。

假如有一种方法让这些 pre-trained 的扩散模型合作起来,发挥各自的专长,那么我们就可以得到一个多功能的生成框架。比如当 text-to-image 模型与 mask-to-image 模型合作时,我们就可以同时接受 text 和 mask 输入,生成与 text 和 mask 一致的图片了。

CVPR 2023 的 Collaborative Diffusion 提供了一种简单有效的方法来实现不同扩散模型之间的合作。



我们先看看不同扩散模型合作生成图片的效果:


当 text-to-image 和 mask-to-image 通过 Collaborative Diffusion 合作时,生成的图片可以达到和输入的 text 以及 mask 高度一致。


给定不同的多模态输入组合,Collaborative Diffusion 可以生成高质量的图片,而且图片与多模态控制条件高度一致。即便多模态输入是相对少见的组合,例如留长头发的男生,和留寸头的女生,Collaborative Diffusion 依旧可以胜任。

那不同的扩散模型究竟怎样实现合作呢?

首先,我们知道,扩散模型在生成图片的过程中,会从高斯噪声开始,逐步去噪,最终得到自然图像。

图片来源:CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications

基于扩散模型迭代去噪的性质,我们的 Collaborative Diffusion 在去噪的每一步都会动态地预测不同的扩散模型如何有效合作,各取所长。Collaborative Diffusion 的基本框架如下图所示。


我们在每一步去噪时,用 Dynamic Diffusers 动态地预测每个扩散模型对整体预测结果带来的影响(也就是 Influence Functions)。Influence Functions 会选择性地增强或者减少某个扩散模型的贡献,从而让各位合作者(也就是扩散模型)发挥专长,实现合作共赢。

值得注意的是,预测得到的 Influence Functions 在时间和空间上都是适应性变化的。下图展示了 mask-to-image 和 text-to-image 模型合作时,在不同时间和空间位置的 Influence Functions 强度。


从上图中我们可以观察到,在时间上,决定 mask-to-image 模型影响的 Influence Functions 在去噪初期很强(第一行左边),到后期逐渐变弱(第一行右边),这是因为扩散模型在去噪初期会首先形成图片内容的布局,到后期才会逐渐生成纹路和细节;而在多模态控制人脸生成时,图片的布局信息主要是由 mask 提供的,因此 mask 分支的 Influence Functions 会随着时间由强变弱。与之相对应地 text-to-image 模型的 Influence Functions(第二行)会随着时间由弱到强,因为 text 提供的多数信息是与细节纹路相关的,例如胡子的浓密程度,头发颜色,以及与年龄相关的皮肤皱纹,而扩散模型的去噪过程也是在后期才会逐步确定图片的纹理以及细节。

与此同时,在空间上,mask-to-image 模型的 Influence 在面部区域分界处更强,例如面部轮廓和头发的外边缘,因为这些地方对整体面部布局是至关重要的。text-to-image 模型的 Influence 则在面中,尤其是脸颊和胡子所在的区域较强,因为这些区域的纹理需要 text 提供的年龄,胡子等信息来填充。

Collaborative Diffusion 的通用性

Collaborative Diffusion 是一个通用框架,它不仅适用于图片生成,还可以让 text-based editing 和 mask-based editing 方法合作起来。我们利用在生成任务上训练的 Dynamic Diffusers 来预测 Influence Functions,并将其直接用到 editing 中。如下图所示:





完整的实验细节和实验结果,以及更多图片结果,请参考论文。

总结

(1) 我们提出了 Collaborative Diffusion,一种简单有效的方法来实现不同扩散模型之间的合作。(2) 我们充分利用扩散模型的迭代去噪性质,设计了 Dynamic Diffuser 来预测在时间和空间上均有适应性的 Influence Functions 来控制不同的扩散模型如何合作。(3) 我们实现了高质量的多模态控制的人脸生成和编辑。(4) Collaborative Diffusion 是一个通用的框架,不仅适用于图片生成,还适用于图片编辑,以及未来更多的基于扩散模型的其他任务。

相关文章
|
5月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
1035 109
|
5月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
508 2
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
503 120
|
6月前
|
存储 人工智能 自然语言处理
告别文字乱码!全新文生图模型Qwen-Image来咯
通义千问团队开源了Qwen-Image,一个20B参数的MMDiT模型,具备卓越的文本渲染和图像编辑能力。支持复杂中英文文本生成与自动布局,适用于多场景图像生成与编辑任务,已在魔搭社区与Hugging Face开源。
1235 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
865 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
5月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
1179 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
|
4月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
1181 2

热门文章

最新文章