MLPerf最新发榜!这家AI芯片公司再获世界第一,大模型性能狂超A100

简介: MLPerf最新发榜!这家AI芯片公司再获世界第一,大模型性能狂超A100


此次是墨芯连续第二次问鼎 MLPerf,也是又一次 “12nm 战胜 4nm”。


ChatGPT 引爆大模型浪潮,也带来了算力挑战:当大模型进入大规模部署阶段,海量算力需求、推理加速等痛点,如何解决?


早在 2021 年,Google Research 和 OpenAI 的合作论文给出答案:《Sparse is Enough in Scaling Transformers》,证明稀疏计算能够为大模型带来数十倍加速。


4 月 6 日,全球权威 AI 基准评测 MLPerf Inference v3.0 公布的结果,再次佐证了:稀疏计算是大模型时代最不容忽视的算力 “潜力股”。


来自中国的 AI 芯片企业 —— 墨芯人工智能,凭借软硬协同的稀疏计算技术,在 MLPerf 竞争最激烈的 ResNet50 模型上蝉联冠军,斩获开放任务分区 “双料冠军”:S40 计算卡以 127,375 FPS,获得单卡算力全球第一;S30 计算卡以 383,520 FPS 算力,获整机 4 卡算力全球第一。


此次是墨芯连续第二次问鼎 MLPerf,也是又一次 “12nm 战胜 4nm”:墨芯 AI 计算卡系列是基于首颗稀疏计算芯片12nm的AntoumⓇ,性能超越了4nm制程产品,展现出稀疏计算的强大优势。

 


作为业界公认最为权威、标准严格的AI基准测试,本届MLPerf参与热度再创新高,共收到来自英伟达、高通、英特尔等25家企业提交的6700多份测试结果,其中最显著的变化当属旨在鼓励创新的开放分区,提交结果数达上一届的三倍之多。种种迹象表明,ChatGPT引爆的大模型趋势将算力产业推向变革关口,众多厂商都在积极探索新的算力增长之道,通过软硬协同、稀疏计算等新方式,以满足大模型迫切的巨量算力需求。

刷新纪录,稀疏计算引领算力突破


继去年 MLPerf 2.1 夺魁以后,本次墨芯在 MLPerf 上再次刷新算力纪录,连获 Resnet-50 单卡、多卡的性能第一,并在 Bert 语言模型上实现性能提升在MLPerf相同模型、数据集、精度条件下,墨芯计算卡产品性能超过英伟达 H100 和 A100。


刷新算力纪录:墨芯 S40 计算卡首次亮相 MLPerf,在数据中心的图像任务主流模型 ResNet-50 上夺得冠军,算力达 127,375 FPS。S40 计算卡性能达英伟达 H100、A100 的 1.4 倍和 2.9 倍。

 


二度问鼎,优势持续扩大:这是墨芯第二次在 ResNet-50 模型上夺冠。墨芯 S40 计算卡比上届冠军 S30 计算卡的算力增幅达 33%,体现出持续的产品性能提升能力。与上一次 MLPerf 相比,墨芯产品相较 H100 和 A100 的算力优势分别扩大了 20% 和 90%。

 


单机 4 卡第一,算力超 8 张 A100:墨芯 30 计算卡获得 ResNet-50 模型 “整机 4 卡” 冠军,算力 383,520 FPS,达英伟达 H100 的 4 卡成绩的 1.8 倍,并且超过英伟达 A100 的 8 卡成绩。

 


在NLP模型BERT上,墨芯S40计算卡算力5,069 SPS达到英伟达提交的A100算力的2.7倍。


适配多服务器,发挥稳定:本次MLPerf中墨芯计算卡在多家厂商的服务器上的运行性能均表现出色、稳定,体现出产品的高成熟度与高兼容性,凸显出稀疏计算生态的广阔前景。

大幅加速推理,赋能 AIGC 等在线应用


随着 ChatGPT 等 AIGC 类应用的推广,加速推理速度、满足用户在线实时交互的需求,已成为大模型落地的一大痛点。在本次 MLPerf 中,墨芯 S30 与 S10 计算卡在离线(Offline)与在线(Server)两种模式下均表现优异,S30在ResNet-50和BERT的在线模式下算力分别达83,998(FPS)和3,009(SPS),展现出稀疏计算同时兼顾高吞吐、低延时的独特优势。



在推理加速方面,稀疏计算还具有更大的发挥空间。此前,墨芯人工智能创始人兼CEO王维在出席活动时透露:在墨芯内测中,在与GPT-3参数相当的开源LLM——1760亿参数的BLOOM上,4张墨芯S30计算卡在仅采用中低倍稀疏率的情况下,就能实现25 tokens/s的内容生成速度,超过8张A100。


实测:在 1760 亿参数的 BLOOM 上,4 张墨芯 S30 计算卡的内容生成速度达到 25 tokens/s,超过 8 张 A100


蝉联冠军的背后,是行业深度洞察与强大技术加持


本次 MLPerf 的参与热度再创新高,在高手云集的激烈竞争中,墨芯连续两届蝉联 MLPerf 冠军,表明了产品的优秀稳定性能与持续领先的地位。不仅如此,此次距离上次 MLPerf 仅过去半年有余,墨芯就推出了新的 AI 计算卡产品,并且性能有大幅提升,凸显出强大的团队实力、工程化能力等综合实力。


产品的持续领先和稳步发展,是建立在对行业的深刻洞察与远见之上的。在 ChatGPT 火爆之前,墨芯团队已经观察到大模型的必然趋势,并笃定:稀疏计算是大模型时代的最佳算力方案。


“Transformers引发的大模型浪潮,代表着整个AI的划时代巨变:在那之前是小模型时代,也就是AI 1.0,以解析式AI为主;到了AI 2.0大模型时代,大模型推动了生成式AI应用场景的爆发。”王维表示,从AI 1.0到AI 2.0,对算力的需求产生质变:“小模型时代,用场景数据训练小模型,研发和部署周期短,对算力的需求主要是通用性、易用性。到了大模型时代,大模型主要基于Transformer模型架构,算子层面逐渐固化,更追求计算速度和算力成本等。”

王维指出,大模型时代的算力痛点主要集中在两点:首先是大算力,大模型参数呈指数级增长,算力需求爆发,产生巨大的算力缺口;另一方面是加快推理速度,由于生成式 AI 基本都是在线应用,系统对于用户的需求要在毫秒内快速响应。


“微创新是大公司做的事情。大模型参数已经突破万亿、并且持续增大,微创新无法根本解决问题。创业公司要做就做有数量级突破的颠覆式创新。墨芯成立之初,我们就看到了:稀疏计算能够带来数量级的性能增长。因此我们一直笃定,做一家稀疏计算公司。” 王维表示。此次墨芯在 MLPerf 的连续夺冠,正是用实际证明了稀疏计算的巨大应用价值,以 “12nm 战胜 4nm” 的成绩打开新的算力增长空间。


墨芯的判断,与业界、学界对稀疏计算的看好是相一致的:Transformers 带来大模型浪潮后,稀疏计算相关研究活跃度显著提升。学界与业界都积极将稀疏计算作为大模型算力破解的重要方向,例如谷歌对 AI 的终极愿景 ——Pathways 架构采用稀疏计算原理:执行任务时仅稀疏激活模型的特定部分,计算真正有用的元素,这正是稀疏计算的本质。


 

谷歌在《Introducing Pathways: A next-generation AI architecture》写道:“今天的模型是稠密和低效的,Pathways 将使它们变得稀疏和高效。” 英伟达也在其 Ampere 架构中首次支持 2 倍稀疏计算。墨芯则将稀疏计算从算法上升到软硬协同层面,2022 年发布首颗高稀疏倍率芯片 AntoumⓇ,能够支持 32 倍稀疏,大幅降低大模型所需的计算量。


MLPerf 参与情况也侧面印证了业界共识:算力提升不能再纯靠硬件,必须通过软硬协同的方式。本届 MLPerf 中开放分区的提交结果再创新高,高通、英特尔等头部企业也提交多项结果,开放分区的算力方案呈现丰富的多样性。


不仅在 MLPerf 上表现出色,墨芯的产品商业落地上也进展迅速。据王维透露,墨芯 AI 计算卡发布数月就已实现量产,在互联网等领域成单落地。ChatGPT 走红后墨芯也收到大量客户问询,了解稀疏计算在大模型上的算力优势与巨大潜力。


ChatGPT 被比尔・盖茨评价为 “其意义不亚于互联网和 PC 的诞生”,被黄仁勋称为 AI 的 “iPhone 时刻”。每一项应用普及的前提,都是由基础设施提供坚实支撑。在大模型时代,稀疏计算无疑是最有前景的最佳算力方案,引领 AI 2.0 时代的算力进化,加速生成式 AI 等应用百花齐放的未来。

相关文章
|
5天前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
70 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
8天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
115 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
10天前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
49 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
9天前
|
存储 人工智能 自然语言处理
|
3天前
|
弹性计算 人工智能 自然语言处理
OS Copilot——面向未来的AI大模型
阿里云的智能助手`OS Copilot`是一款基于大模型构建的操作系统智能助手,支持自然语言问答、辅助命令执行、系统运维调优等功能。
27 8
OS Copilot——面向未来的AI大模型
|
4天前
|
数据采集 人工智能 安全
1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化
在人工智能领域,大型语言模型(LLMs)的发展迅速,但如何提升其指令遵循能力仍是一大挑战。论文提出MATRIX-Gen,一个基于多智能体模拟的AI社会模拟器。MATRIX-Gen通过模拟智能体交互生成多样化的现实场景,不依赖预定义模板,从而合成高质量指令数据。它包括MATRIX模拟器和MATRIX-Gen指令生成器,能生成监督微调、偏好微调及特定领域的数据集。实验表明,使用MATRIX-Gen合成的数据集微调后的模型在多个基准测试中表现出色,显著优于现有方法。然而,该方法也面临智能体和场景规模对数据质量的影响等挑战。
45 33
|
6天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
92 21
|
3天前
|
机器学习/深度学习 存储 人工智能
淘天算法工程师玩转《黑神话》,多模态大模型如何成为天命AI
淘天集团未来生活实验室的算法工程师们以ARPG游戏《黑神话:悟空》为平台,探索多模态大模型(VLM)在仅需纯视觉输入和复杂动作输出场景中的能力边界。他们提出了一种名为VARP的新框架,该框架由动作规划系统和人类引导的轨迹系统组成,成功在90%的简单和中等难度战斗场景中取得胜利。研究展示了VLMs在传统上由强化学习主导的任务中的潜力,并提供了宝贵的人类操作数据集,为未来研究奠定了基础。
|
4天前
|
人工智能 弹性计算 JSON
AI大模型复习“搭子”—部署流程演示
本文主要介绍文档智能,介绍利用大模型构建知识库和AI学习助手的部署流程,主要包括以下几方面的内容: 1.什么是文档智能 2.文档智能 & RAG 3.基于文档智能和百炼平台的RAG应用案例
|
2天前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
7 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割

热门文章

最新文章